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Abstract 
 

Chronic Kidney Disease (CKD) is a progressive condition that poses a major global health 

burden due to its asymptomatic onset and association with increased morbidity and mortality. 

Early detection and risk stratification are essential for effective intervention, yet traditional 

diagnostic approaches often fail to capture complex patterns within heterogeneous clinical data. 

This study develops and evaluates machine learning models for CKD prediction, with a focus 

on enhancing interpretability to support clinical decision-making. Using the Kaggle dataset, 

data preprocessing techniques including normalization and missing value imputation were 

applied, followed by training models such as Logistic Regression, Random Forest, Support 

Vector Machine, and XGBoost. Model performance was assessed using accuracy, precision, 

recall, F1-score, and AUC-ROC. The results demonstrate that ensemble methods, particularly 

Random Forest and XGBoost, achieved superior predictive accuracy. To address the “black-

box” challenge of machine learning, SHAP (Shapley Additive Explanations) values were 

employed to provide both local and global interpretability, revealing clinically meaningful risk 

factors such as serum creatinine and blood pressure. The findings highlight the potential of 

interpretable AI models to improve CKD diagnosis, patient monitoring, and personalized 

treatment strategies. 
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Chapter 1- Introduction 
 

1.1 Background and Context 

Chronic Kidney Disease (CKD) represents a long-term and progressive medical condition in 

which the kidneys gradually lose their ability to function effectively. Clinically, CKD is defined 

by structural or functional abnormalities in the kidneys that persist for more than three months, 

typically evidenced through reduced glomerular filtration rate (GFR), raised serum creatinine 

levels, and the presence of protein in the urine (Levey et al., 2005). Unlike acute kidney 

injuries, CKD often progresses silently in its early stages, with noticeable symptoms emerging 

only when the disease reaches advanced levels. This “silent” progression makes it one of the 

most significant threats to global health. 

The global burden of CKD is profound. The Global Burden of Disease Study reported that 

CKD now affects around 10% of the adult population worldwide, and its prevalence is rising 

largely due to the growing incidence of diabetes, hypertension, and ageing populations (GBD 

Chronic Kidney Disease Collaboration, 2020). The World Health Organization (2020) ranked 

CKD among the top twenty leading causes of death globally, attributing over one million deaths 

annually to the disease. In addition to mortality, the impact on patients’ quality of life is 

substantial, as end-stage renal disease (ESRD) often requires long-term dialysis or kidney 

transplantation, both of which are resource-intensive and financially burdensome (Luyckx et 

al., 2018). 

The importance of early detection cannot be overstated. Timely intervention at the early stages 

of CKD has been shown to slow progression, reduce complications, and improve patient 

outcomes. Preventive measures such as lifestyle modification, strict control of blood pressure 

and diabetes, and use of nephroprotective medications are far more effective when initiated 

early (Ene-Iordache et al., 2016). However, the challenge lies in the fact that the symptoms of 

CKD, such as tiredness, loss of appetite, or swelling, are nonspecific and can easily be 

attributed to other conditions. Consequently, patients are frequently diagnosed only when the 

disease has progressed to irreversible stages. This delay in detection underlines the urgent need 



for predictive and preventative approaches in healthcare that can identify high-risk patients 

before severe damage occurs. 

1.2 Problem Definition 

 

The current reliance on conventional clinical measures, such as serum creatinine tests, 

estimated GFR, and urinalysis, poses limitations in the early detection of CKD. Although these 

measures are standard in medical practice, they are not always sensitive enough to pick up 

early-stage disease (Mills et al., 2015). In many instances, CKD is detected during routine 

testing for other conditions, meaning that opportunities for earlier intervention are often 

missed. 

Three core challenges stand out in the diagnosis and management of CKD: 

1. Late diagnosis – Many patients are diagnosed only at advanced stages of CKD, by 

which point treatment options are limited and costly (Couser et al., 2011). 

2. Risk of misclassification – False negatives, where patients with CKD are not 

identified, may result in missed treatment opportunities. Conversely, false positives, 

where healthy individuals are incorrectly labelled as diseased, can lead to unnecessary 

stress, further testing, and resource wastage. 

3. Rising comorbidities – The increase in diabetes, hypertension, and obesity complicates 

both diagnosis and treatment, as these conditions can mask or accelerate kidney decline 

(Foreman et al., 2018). 

These limitations illustrate the need for innovative, data-driven methods that go beyond manual 

interpretation of clinical test results. Machine learning (ML) has emerged as a promising tool 

in this regard, as it can analyse complex datasets to reveal patterns and predict disease outcomes 

with high accuracy. The application of ML to CKD prediction provides a valuable opportunity 

to identify at-risk patients at an earlier stage and to assist clinicians in making timely, evidence-

based decisions (Shickel et al., 2018). 

1.3 Role of Machine Learning in Healthcare 

The integration of machine learning (ML) into healthcare has become one of the most 

transformative developments in modern medicine. With the increasing availability of electronic 

health records, clinical laboratory data, and medical imaging, large volumes of patient 

information can now be analysed using computational techniques that go beyond the 



capabilities of traditional statistics (Miotto et al., 2018). Unlike conventional approaches, 

which often rely on linear assumptions and limited variables, ML algorithms are able to detect 

subtle and complex patterns within high-dimensional data, enabling more accurate predictions 

of disease risk and progression (Kourou et al., 2015). 

In practice, ML has already demonstrated success across various medical domains. For 

example, deep learning models have been used to classify skin cancer from images at a level 

comparable to dermatologists (Esteva et al., 2019), while predictive algorithms for sepsis and 

heart disease have outperformed traditional clinical scoring systems (Rajkomar et al., 2019). 

These applications illustrate the potential of ML to act as a decision-support tool, offering 

earlier detection of diseases, better patient stratification, and improved allocation of healthcare 

resources. 

The case of Chronic Kidney Disease (CKD) is particularly suitable for ML approaches. CKD 

risk is influenced by a combination of biochemical measures (such as serum creatinine, 

haemoglobin, and albumin), demographic factors, and comorbidities including diabetes and 

hypertension. Traditional diagnostic methods may struggle to integrate these heterogeneous 

data points simultaneously, whereas ML algorithms can handle both categorical and continuous 

features to deliver more reliable predictions (Huang et al., 2020). By applying ML, patterns 

that are not easily visible to clinicians can be identified, allowing high-risk patients to be 

flagged earlier in the disease trajectory. 

However, in the healthcare domain, predictive accuracy on its own is not enough. Clinical 

decision-making requires not only correct outcomes but also transparent reasoning. The 

widespread use of “black-box” models such as deep neural networks raises concerns among 

healthcare professionals, as the rationale behind predictions is often unclear (Caruana et al., 

2015). This lack of interpretability can hinder clinical trust and regulatory approval, 

particularly when the stakes involve patient lives. To address this challenge, explainable 

artificial intelligence (XAI) techniques such as SHAP (SHapley Additive Explanations. These 

approaches provide both global insights into which features are most influential overall and 

local explanations for individual predictions, making the results more interpretable for 

clinicians (Lundberg and Lee, 2017; Ribeiro et al., 2016). 

Thus, the role of ML in healthcare extends beyond predictive capability. It encompasses the 

need for systems that are interpretable, ethically responsible, and clinically usable. For CKD 

prediction, ML not only offers the possibility of earlier and more accurate detection but also 



provides tools to ensure that clinicians understand and trust the basis of each prediction. This 

balance between accuracy and interpretability is essential for the adoption of ML-driven 

systems in real-world healthcare practice. 

1.4 Aim and Objectives 

The aim of this research is to design and evaluate an interpretable machine learning framework 

for the early prediction of Chronic Kidney Disease (CKD) using clinical datasets. The study 

intends to move beyond traditional diagnostic methods by applying advanced computational 

techniques that are capable of identifying subtle patterns within patient data, while ensuring 

that the predictive outputs are interpretable and clinically meaningful. This dual focus on 

accuracy and transparency reflects the growing consensus in healthcare that artificial 

intelligence systems must not only perform well but also provide clear justifications for their 

predictions (Caruana et al., 2015; Ribeiro et al., 2016). 

To achieve this aim, the project sets out the following objectives: 

1. Dataset preparation – To obtain a publicly available CKD dataset and perform 

rigorous preprocessing, including the handling of missing values, detection of 

inconsistencies, and preparation of the data for modelling. Effective preprocessing is 

fundamental, as poor data quality is one of the leading causes of unreliable machine 

learning outcomes in healthcare (Kourou et al., 2015). 

2. Feature representation – To apply appropriate encoding and scaling methods for 

categorical and numerical variables, thereby ensuring comparability across features. 

Proper feature engineering enhances model learning capacity and reduces bias in 

predictive outcomes (Shickel et al., 2018). 

3. Model development – To implement and train a diverse set of classification algorithms, 

including Logistic Regression, Support Vector Machine (SVM), Random Forest, Naïve 

Bayes, LightGBM, and XGBoost. These models were selected to represent both simple 

interpretable methods and more advanced ensemble-based approaches, allowing a 

balanced evaluation of performance and practicality in clinical settings (Huang et al., 

2020). 

4. Model evaluation and comparison – To evaluate model performance using a suite of 

healthcare-relevant metrics, namely accuracy, precision, recall, F1-score, and the Area 

Under the Receiver Operating Characteristic Curve (ROC-AUC). The use of multiple 



metrics ensures that the models are assessed not only for overall correctness but also 

for their ability to minimise false negatives and false positives, both of which carry 

significant clinical consequences (Rajkomar et al., 2019). 

5. Interpretability integration – To employ explainable artificial intelligence (XAI) 

methods such as SHAP (SHapley Additive Explanations).These methods provide 

insights into how specific features contribute to predictions, enabling clinicians to trust 

and validate the outputs of machine learning systems (Lundberg and Lee, 2017; Ribeiro 

et al., 2016). 

6. Ethical consideration – To assess the ethical dimensions of developing predictive 

models in healthcare, including fairness, potential bias, data security, and compliance 

with privacy regulations such as the General Data Protection Regulation (GDPR). 

Ethical evaluation ensures that predictive tools align with patient rights and healthcare 

governance frameworks (Vayena et al., 2018). 

Through these objectives, the project seeks to contribute both academically and clinically. 

Academically, it benchmarks multiple machine learning techniques for CKD prediction and 

demonstrates the role of explainability in enhancing trust in predictive models. Clinically, it 

provides a framework that could support practitioners in making timely and evidence-based 

decisions for patients at risk of CKD, ultimately aiming to improve health outcomes and reduce 

the long-term burden of the disease. 

1.5 Scope and Significance of the Study 

The scope of this project is defined by its focus on the development of a predictive framework 

for early detection of Chronic Kidney Disease (CKD) using machine learning techniques. The 

study makes use of a publicly available CKD dataset consisting of both numerical and 

categorical clinical features, such as blood pressure, serum creatinine, haemoglobin levels, and 

patient history of comorbidities. The models selected—Logistic Regression, Support Vector 

Machine (SVM), Random Forest, Naïve Bayes, LightGBM, and XGBoost—represent a 

balance between traditional interpretable classifiers and more advanced ensemble methods. 

The inclusion of multiple models ensures that the study does not rely on a single approach but 

provides a comparative analysis that highlights both strengths and limitations of different 

algorithms in a healthcare setting (Kourou et al., 2015; Huang et al., 2020). 

The significance of this work lies in its dual emphasis on accuracy and interpretability. While 

predictive performance is crucial, clinical adoption depends heavily on whether healthcare 



professionals can understand and trust the system’s outputs. By integrating explainable 

artificial intelligence (XAI) methods such as SHAP and LIME, the project contributes to 

bridging the gap between complex models and clinical usability, allowing physicians to gain 

insights into how and why predictions are made (Ribeiro et al., 2016; Lundberg and Lee, 2017). 

Furthermore, by embedding ethical considerations such as fairness, bias reduction, and 

compliance with the General Data Protection Regulation (GDPR), the study ensures that its 

contributions are not only technical but also aligned with the responsibilities of modern 

healthcare systems (Vayena et al., 2018). 

Ultimately, the project’s significance extends beyond academic experimentation. It 

demonstrates how machine learning can be translated into clinically meaningful tools for early 

CKD prediction. This has the potential to support timely interventions, improve patient 

outcomes, and reduce the economic burden of advanced-stage CKD, thereby making a direct 

contribution to both healthcare practice and broader public health objectives (GBD Chronic 

Kidney Disease Collaboration, 2020). 

1.5 Research Questions 

Formulating clear research questions is essential for aligning the objectives of a study with the 

methodology and expected outcomes. In this project, the research questions are designed to 

address both the technical and practical aspects of applying machine learning (ML) to the early 

prediction of Chronic Kidney Disease (CKD). They not only reflect the computational 

challenges of developing predictive models but also consider the clinical, ethical, and 

interpretability requirements that influence whether such models can be realistically adopted 

in healthcare practice. 

Research Question 1: How effective are different machine learning algorithms, such as 

Logistic Regression, Support Vector Machine, Random Forest, Naïve Bayes, LightGBM, 

and XGBoost, in predicting early-stage CKD from clinical data? 

The first research question aims to evaluate the comparative effectiveness of different ML 

classifiers. Logistic Regression and Support Vector Machine (SVM) have been widely used in 

medical prediction tasks because of their interpretability and ability to handle binary outcomes 

(Kourou et al., 2015). Ensemble methods such as Random Forest, LightGBM, and XGBoost 

are more advanced techniques capable of modelling non-linear relationships and interactions 

between clinical features (Huang et al., 2020). Naïve Bayes, while simplistic, is often used as 

a baseline in healthcare studies due to its speed and ease of implementation (Rajkomar et al., 

2019). This question ensures that the study not only benchmarks multiple models but also 



identifies which algorithm balances accuracy, generalisability, and clinical usability most 

effectively. 

Research Question 2: What preprocessing techniques, including missing value 

imputation, categorical encoding, and feature scaling, are most suitable for preparing 

CKD datasets for predictive modelling? 

Medical datasets frequently suffer from incompleteness, inconsistencies, and variations in data 

entry. Missing values, in particular, are common in CKD records due to patients skipping tests 

or incomplete reporting (Mills et al., 2015). This question explores whether techniques such as 

K-Nearest Neighbour (KNN) imputation can provide realistic replacements for missing values, 

preserving the relationships between features (Jerez et al., 2010). Similarly, encoding 

categorical features such as hypertension status and red blood cell characteristics is critical to 

ensure they are properly represented in ML models. Feature scaling, using approaches like 

Min-Max Normalisation, is equally important for models sensitive to input magnitudes 

(Shickel et al., 2018). Answering this question ensures that the dataset used for modelling is 

not only clean but also optimised for learning, which directly influences the reliability of the 

predictions. 

Research Question 3: Which evaluation metrics provide the most reliable assessment of 

predictive performance in the healthcare context, and how do different models compare 

against them? 

Accuracy alone cannot determine whether a model is useful in a healthcare setting. For 

instance, in imbalanced datasets, a model may achieve high accuracy while failing to identify 

positive cases, which could have dangerous clinical implications (Caruana et al., 2015). Hence, 

this research question addresses the need to use metrics such as precision, recall, F1-score, and 

ROC-AUC. Precision ensures the reduction of false positives, recall focuses on minimising 

false negatives, F1-score balances the two, and ROC-AUC provides a threshold-independent 

view of model discrimination (Rajkomar et al., 2019). By systematically comparing models 

against these metrics, the study aims to provide a holistic view of their strengths and 

weaknesses, ensuring that the selected model is both statistically robust and clinically safe. 

Research Question 4: How can explainable artificial intelligence (XAI) methods such as 

SHAP and LIME enhance the interpretability of machine learning models in CKD 

prediction? 

Interpretability is a fundamental barrier to the adoption of ML in healthcare. Clinicians often 



hesitate to trust “black-box” models because they cannot see how predictions are derived 

(Caruana et al., 2015). SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016) are 

two widely used XAI methods that provide explanations at both the global and local levels, 

showing which features influence overall predictions and individual patient outcomes. This 

research question ensures that the study does not only focus on achieving high performance 

but also addresses transparency and trustworthiness. By integrating XAI, the project 

contributes to making ML tools more practical in real-world clinical decision-making. 

Research Question 5: What ethical and practical considerations, including fairness, 

privacy, and regulatory compliance, need to be addressed to ensure that predictive models 

for CKD are trustworthy and clinically applicable? 

Machine learning in medicine must be developed within an ethical and regulatory framework 

to avoid potential harm. Issues such as data bias, inequality in predictions across patient groups, 

and compliance with data protection regulations like the General Data Protection Regulation 

(GDPR) are critical (Vayena et al., 2018). For example, if a model disproportionately 

misclassifies patients based on age or gender, it may reinforce health disparities. This research 

question ensures that the study not only addresses technical feasibility but also acknowledges 

broader responsibilities, aligning predictive modelling with ethical standards and patient rights. 

Together, these research questions create a structured pathway for the dissertation. They 

establish the technical scope by focusing on preprocessing, model selection, and evaluation, 

while also highlighting interpretability and ethics as crucial dimensions. Answering them will 

allow the project to contribute meaningfully to both academic research in machine learning and 

its practical application in the healthcare domain, particularly for the early detection of CKD. 

1.6 Structure of the Dissertation 

The dissertation is organised into the following chapters: 

• Chapter 1 – Introduction: Provides the background of the study, defines the research 

problem, outlines the aim and objectives, and explains the significance and scope of the 

work. 

• Chapter 2 – Literature Review: Reviews existing work on Chronic Kidney Disease 

prediction, machine learning in healthcare, and the role of interpretability methods such 

as SHAP and LIME. 



• Chapter 3 – System Design: Presents the overall design of the proposed system, 

including architectural diagrams, workflow representations, and the approaches 

followed to integrate preprocessing, model training, and interpretability. 

• Chapter 4 – Methodology: Describes the dataset, preprocessing pipeline, selected 

machine learning algorithms, evaluation framework, and ethical considerations. 

• Chapter 5 – Implementation and Results: Provides coding evidence with 

screenshots, details model training and testing, compares classifiers using evaluation 

metrics, and presents interpretability results. 

• Chapter 6 – Discussion: Interprets and analyses the findings in relation to existing 

literature, highlighting strengths, limitations, and clinical significance. 

• Chapter 7 – Conclusion and Future Work: Summarises the contributions of the 

project, reflects on achievements, and outlines opportunities for future research and 

development. 

• References and Appendices: Contain the full list of references in Harvard style and 

supplementary material, including extended tables, figures, and code excerpts. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 2: Literature Review 
 

2.1 Introduction to the Literature Review 

A literature review serves as the foundation for any research project, providing a critical 

understanding of what has already been achieved and where knowledge gaps persist. In this 

study, the review has two primary purposes: first, to explore how Chronic Kidney Disease 

(CKD) has been approached within existing clinical and computational research; and second, 

to establish how machine learning (ML) techniques can be applied, evaluated, and improved 

for the prediction of CKD. 

The review begins with the clinical context of CKD, outlining its prevalence, major risk factors, 

and the challenges that arise in early detection and management. From there, attention shifts to 

the role of ML in healthcare more broadly, before narrowing to focus on how these approaches 

have been specifically applied in CKD prediction. By distinguishing between primary 

research—original studies that present empirical findings on predictive models—and 

secondary research, such as systematic reviews and meta-analyses that evaluate multiple 

approaches collectively, the review builds a balanced perspective (Kitchenham and Charters, 

2007). This distinction is important, as it allows the project to draw not only on individual case 

evidence but also on broader patterns in the literature. 

A further strand of the review concerns the techniques and methodologies used in existing 

systems. This includes the handling of missing data, feature selection strategies, the choice of 

classification algorithms, and the metrics applied for performance evaluation. In reviewing 

these works, it becomes clear that many existing systems have prioritised predictive accuracy 

while paying less attention to interpretability and ethical considerations—two dimensions that 

are critical in healthcare settings (Rajkomar et al., 2019; Shickel et al., 2018). 

The chapter therefore plays a dual role: it situates the present study within the existing body of 

work, and it highlights the shortcomings that justify the development of a new framework. In 

particular, the review identifies the need for approaches that combine reliable performance with 

transparency and fairness. This project responds to that gap by proposing a comparative 



analysis of multiple machine learning models, supported by robust preprocessing methods and 

enhanced by explainable artificial intelligence (XAI) tools such as SHAP and LIME. In this 

way, the study not only builds on existing research but also aims to make a practical 

contribution to the development of interpretable, ethically grounded predictive systems for 

CKD. 

2.2 Background on Chronic Kidney Disease (CKD) 

Chronic Kidney Disease (CKD) is a progressive and long-term condition in which the kidneys 

gradually lose their ability to filter waste and maintain essential bodily functions. It is clinically 

defined as abnormalities of kidney structure or function lasting more than three months, 

commonly measured through reduced glomerular filtration rate (GFR), elevated serum 

creatinine levels, and the presence of albumin in urine (Levey et al., 2005). CKD is often 

referred to as a “silent disease” because its early stages present few noticeable symptoms. 

Patients may feel well until the kidneys are already severely impaired, at which point treatment 

options become limited and costly (Jha et al., 2013). 

The global impact of CKD is striking. The Global Burden of Disease (GBD) Study estimated 

that almost 700 million people were living with CKD in 2017, making it one of the most 

prevalent non-communicable diseases worldwide (GBD Chronic Kidney Disease 

Collaboration, 2020). Mortality linked to CKD has increased significantly in the last two 

decades, and the World Health Organization (2020) now lists it among the leading causes of 

death globally. Importantly, CKD rarely exists in isolation. Patients with CKD are at a 

heightened risk of cardiovascular events, with cardiovascular mortality often exceeding deaths 

directly attributable to kidney failure (Tonelli et al., 2016). This dual burden reinforces the need 

for earlier detection and management strategies. 

From an economic perspective, CKD places a heavy strain on healthcare systems. Patients who 

progress to end-stage renal disease (ESRD) require dialysis or kidney transplantation, both of 

which are resource-intensive. In high-income countries such as the United States and the 

United Kingdom, dialysis alone costs healthcare systems tens of thousands of dollars per 

patient annually. By contrast, in many low- and middle-income countries, access to dialysis is 

scarce, meaning many patients do not survive once they reach ESRD (Couser et al., 2011; 

Luyckx et al., 2018). Consequently, there is an urgent emphasis on preventing CKD 

progression through effective early interventions. 



The causes of CKD are closely linked to other major global health challenges. Diabetes mellitus 

and hypertension are the two leading drivers, jointly responsible for the majority of CKD cases 

worldwide (Foreman et al., 2018). Other contributors include obesity, smoking, cardiovascular 

disease, genetic predisposition, and environmental exposures. Beyond biological factors, social 

determinants such as poverty, limited healthcare access, and lack of awareness also play a 

critical role in disease prevalence and progression, particularly in resource-limited regions 

(Ene-Iordache et al., 2016). 

Despite its scale, CKD remains difficult to diagnose in the early stages. Current diagnostic 

tools, including serum creatinine measurement, GFR estimation, and urine protein tests, are 

effective in detecting moderate to advanced disease but lack sensitivity for identifying early 

kidney damage (Mills et al., 2015). Furthermore, these tests require repeated laboratory access, 

which is not always feasible in under-resourced areas. This diagnostic gap contributes to late 

identification, at which point treatment options are less effective, and patients are at higher risk 

of poor outcomes. 

This situation highlights the pressing need for approaches that go beyond conventional clinical 

testing. Predictive models using computational techniques can help identify high-risk 

individuals before severe kidney damage occurs. Machine learning, in particular, has the 

capacity to integrate diverse clinical features—ranging from laboratory values to demographic 

data—into models that predict disease risk more accurately than traditional methods (Huang et 

al., 2020). By enabling earlier detection, such systems can support clinicians in initiating 

preventive strategies, reducing the likelihood of disease progression, and ultimately lessening 

both the human and economic costs of CKD. 

2.3 Existing Systems for CKD Prediction 

Over the last decade, researchers have increasingly explored the use of machine learning (ML) 

to support the early prediction of Chronic Kidney Disease (CKD). A range of models has been 

applied, from traditional classifiers to modern ensemble methods and neural networks, each 

showing varying levels of effectiveness. Reviewing these systems is important not only to 

recognise their achievements but also to identify the limitations that motivate the present study. 

Traditional classifiers such as Logistic Regression and Support Vector Machine (SVM) have 

been widely adopted in early CKD studies. Logistic Regression is often chosen for its 

interpretability and suitability for binary classification. For example, Aljaaf et al. (2018) 

reported that Logistic Regression achieved over 95% accuracy in predicting CKD when applied 



to clinical datasets with carefully selected features. Similarly, SVM has been highlighted for 

its ability to manage high-dimensional data and create robust separation between CKD and 

non-CKD groups (Kavitha and Kannan, 2016). However, while these models produce reliable 

predictions, their ability to capture non-linear interactions between clinical variables is limited, 

restricting performance when data complexity increases. 

To overcome such limitations, ensemble methods have gained prominence. Random Forest has 

been one of the most commonly applied ensemble models in CKD prediction. Studies such as 

Ghosh et al. (2019) demonstrated that Random Forest consistently outperformed Logistic 

Regression and SVM, achieving accuracies close to 99% while also providing feature 

importance measures that highlight clinically relevant indicators such as serum creatinine and 

haemoglobin. More recently, gradient boosting frameworks like XGBoost and LightGBM have 

been applied, with findings showing that these methods often exceed the performance of 

Random Forest. In their review, Huang et al. (2020) noted that boosting algorithms are 

particularly effective at handling missing data and producing stable results across different 

healthcare datasets, making them highly suitable for CKD applications. 

Artificial Neural Networks (ANNs) have also been tested for CKD prediction, motivated by 

their ability to model complex, non-linear patterns. Parmar et al. (2018) applied a multilayer 

perceptron to the Kaggle dataset and reported high accuracy levels comparable to ensemble 

methods. Despite this, ANNs are often criticised for their “black-box” nature, as they do not 

provide clinicians with clear explanations of how predictions are made (Caruana et al., 2015). 

This lack of interpretability has slowed their clinical adoption despite their strong predictive 

capacity. 

Beyond individual case studies, several secondary research works have attempted to synthesise 

findings across multiple models. Agarwal et al. (2021), in a systematic review, concluded that 

while most ML models for CKD prediction achieve high reported accuracies (often above 

95%), the majority are trained on small datasets, usually the Kaggle dataset of 4000 records, 

which raises concerns about generalisability. Kourou et al. (2015), in a broader review of ML 

in disease prediction, also noted that although algorithms show strong performance, issues such 

as small sample sizes, class imbalance, and lack of external validation continue to limit their 

reliability in real-world clinical practice. 

One consistent weakness across many existing systems is their focus on accuracy at the expense 

of interpretability. While Random Forest and boosting algorithms provide variable importance 



rankings, these are often insufficient to meet the transparency demands of clinical practice. 

Few studies have actively incorporated explainable artificial intelligence (XAI) techniques 

such as SHAP or LIME to provide both global and local explanations of model predictions 

(Ribeiro et al., 2016; Lundberg and Lee, 2017). This is a critical gap, as the medical community 

requires not only accurate tools but also systems that can justify their outputs in a way that is 

understandable to clinicians and patients alike. 

In summary, the literature demonstrates that CKD prediction using ML is feasible and has 

produced high reported accuracies across a range of models. However, three key limitations 

persist: reliance on small and homogeneous datasets, overemphasis on accuracy without 

interpretability, and limited attention to ethical or clinical adoption issues. These shortcomings 

provide the basis for the present project, which seeks to advance the field by implementing a 

comparative evaluation of multiple models—including Logistic Regression, SVM, Random 

Forest, Naïve Bayes, LightGBM, and XGBoost—while integrating SHAP for interpretability 

and embedding ethical considerations. By addressing these gaps, the proposed framework aims 

to offer a more balanced and clinically relevant approach than many existing systems. 

2.4 Proposed and Justified Approach 

Building on the review of existing systems, this project proposes an approach that addresses 

their limitations while offering a framework that is accurate, transparent, and clinically 

meaningful. Many earlier studies have shown that machine learning (ML) can achieve strong 

predictive performance in CKD detection, but they often relied on small datasets, weak 

preprocessing pipelines, or placed disproportionate emphasis on accuracy without considering 

interpretability or ethical concerns (Agarwal et al., 2021; Kourou et al., 2015). The design of 

this project directly responds to those gaps by integrating rigorous preprocessing, a 

comparative evaluation of multiple models, explainable artificial intelligence (XAI), and 

explicit attention to fairness and privacy. 

The first strength of this approach lies in its data preprocessing pipeline. Clinical datasets often 

suffer from incomplete and inconsistent values, yet many studies simply remove missing 

records or replace them with averages, which can distort clinical patterns. In this project, 

missing values are addressed using K-Nearest Neighbour (KNN) imputation, a method that 

preserves the natural relationships between patients by filling gaps based on similarity (Jerez 

et al., 2010). Alongside this, categorical variables such as hypertension status are carefully 

encoded, and numerical attributes are normalised using Min-Max scaling to ensure 



comparability across features. This level of preprocessing ensures that the models are trained 

on a more accurate and reliable dataset, strengthening the foundation for prediction. 

At the modelling stage, the project deliberately adopts a comparative strategy. Instead of 

depending on a single algorithm, six classifiers are implemented: Logistic Regression, Support 

Vector Machine (SVM), Random Forest, Naïve Bayes, LightGBM, and XGBoost. Logistic 

Regression is chosen for its interpretability, while SVM provides a strong benchmark for high-

dimensional classification tasks. Ensemble methods such as Random Forest, LightGBM, and 

XGBoost have been shown to capture complex non-linear relationships in healthcare data and 

often outperform traditional methods in predictive accuracy (Huang et al., 2020). Including 

Naïve Bayes ensures that even simpler models are benchmarked, offering a fairer comparison 

across the spectrum of classifiers. This breadth of evaluation provides deeper insights into 

which techniques are most effective for CKD prediction and ensures that the strongest model 

is selected not on assumption, but on empirical evidence. 

What sets this framework apart from many existing studies is its emphasis on interpretability. 

In healthcare, clinicians are unlikely to adopt models that act as black boxes, regardless of their 

accuracy (Caruana et al., 2015). To overcome this, the project integrates SHAP (SHapley 

Additive Explanations). SHAP provides both global insights, by identifying which features 

most influence outcomes across the dataset, and local explanations for individual patient cases. 

This interpretability ensures that predictions are not only correct but also understandable, 

building trust and enabling clinicians to act confidently on the results. 

The evaluation framework is equally comprehensive. Instead of focusing solely on accuracy, 

which can be misleading in healthcare, the project uses a suite of metrics: precision, recall, F1-

score, and ROC-AUC. Each provides a different perspective: precision reduces false positives, 

recall reduces false negatives, F1-score balances the two, and ROC-AUC gives a threshold-

independent view of discriminatory power (Rajkomar et al., 2019). By combining these 

metrics, the system ensures that its performance is assessed in a way that reflects the realities 

of clinical decision-making. 

Finally, the project incorporates ethical and practical considerations. Patient data must be 

handled responsibly, with awareness of fairness, bias, and regulatory compliance such as 

GDPR. Unlike many earlier studies that overlooked these issues, this framework acknowledges 

them explicitly, ensuring that it aligns with both clinical expectations and broader societal 

responsibilities (Vayena et al., 2018). 



Taken together, these elements justify the proposed approach as an advancement over existing 

systems. It strengthens data preprocessing, broadens model comparison, integrates 

interpretability through XAI, and embeds ethical safeguards. This balance of technical 

robustness, transparency, and responsibility positions the framework as a more reliable and 

clinically relevant solution for CKD prediction, offering meaningful improvements over prior 

approaches. 

2.6 Techniques and Methodologies in CKD Prediction 

 

Research on CKD prediction has employed a wide range of techniques across the stages of 

preprocessing, feature selection, model development, and evaluation. A closer look at the 

literature, including both primary studies and secondary reviews, highlights how 

methodologies have evolved and where limitations persist. 

Data Preprocessing Handling missing values is a consistent challenge in CKD datasets. Early 

studies often relied on simple mean or mode imputation, but this approach risks distorting 

medical relationships (Mills et al., 2015). More advanced techniques, such as K-Nearest 

Neighbour (KNN) imputation, have been adopted in several primary studies and shown to 

improve prediction reliability by using patient similarity to estimate missing entries (Jerez et 

al., 2010). Ghosh et al. (2019) further demonstrated that the choice of imputation strategy 

directly affects classification outcomes, reinforcing its importance. Secondary reviews, such as 

Kourou et al. (2015), emphasise preprocessing as a critical determinant of model performance, 

noting that inconsistent treatment of missing data contributes to wide variation in reported 

results across studies. Encoding categorical features has also been carefully considered: Aljaaf 

et al. (2018) highlight the effectiveness of one-hot encoding in avoiding ordinality bias, while 

feature scaling methods like Min-Max Normalisation are widely used to ensure compatibility 

with algorithms sensitive to magnitude differences, including SVMs and neural networks 

(Shickel et al., 2018). 

Feature Selection and Dimensionality Reduction Identifying the most relevant predictors 

has been a focus of both primary and secondary research. In a study by Aljaaf et al. (2018), 

LASSO regression was applied to CKD data, consistently identifying serum creatinine, 

haemoglobin, and albumin as strong predictors. The Boruta algorithm has also been used to 

validate feature relevance, with findings supporting the significance of biochemical indicators 

such as blood urea and red blood cell counts (Kavitha et al., 2019). Secondary analyses by 



Agarwal et al. (2021) confirm that feature selection improves both accuracy and 

interpretability, reducing the risk of overfitting while highlighting clinically meaningful 

variables. Although Principal Component Analysis (PCA) has been trialled for dimensionality 

reduction (Miotto et al., 2018), it has been criticised for reducing interpretability, which is an 

essential requirement in healthcare contexts. 

Classification Models A wide spectrum of classifiers has been tested in CKD prediction. 

Logistic Regression remains popular for its interpretability and strong performance in binary 

outcomes (Aljaaf et al., 2018). SVM has been shown to achieve comparable accuracy while 

excelling in high-dimensional classification (Kavitha and Kannan, 2016). Ensemble methods 

dominate recent literature: Ghosh et al. (2019) reported that Random Forest achieved higher 

accuracy than Logistic Regression and SVM while offering variable importance rankings. 

Boosting algorithms such as XGBoost and LightGBM are increasingly used; Huang et al. 

(2020) noted in a systematic review that they consistently outperform traditional models in 

CKD prediction by handling non-linear interactions more effectively. Neural networks have 

also been explored, with Parmar et al. (2018) achieving competitive results using a multilayer 

perceptron. However, secondary reviews (Shickel et al., 2018) caution that small CKD datasets 

limit the effectiveness of deep learning methods, which require larger sample sizes to generalise 

well. 

Evaluation Metrics Accuracy has long been the most reported metric, but researchers 

increasingly stress that it is insufficient in healthcare settings. In a primary study, Ghosh et al. 

(2019) showed that while Random Forest achieved high accuracy, its recall value was more 

clinically meaningful in identifying patients with CKD. Precision and recall are now widely 

reported, with recall particularly important to minimise false negatives. Agarwal et al. (2021) 

highlight the F1-score as a balanced measure that is more informative than accuracy alone in 

imbalanced datasets. ROC-AUC is also frequently used, with Rajkomar et al. (2019) 

recommending it as a threshold-independent evaluation metric that provides a broader view of 

discriminatory ability. Secondary surveys confirm that studies reporting multiple metrics 

provide a more reliable assessment of clinical utility than those focused solely on accuracy 

(Kourou et al., 2015). 

Interpretability and Explainability While some models, such as Random Forest, provide 

feature importance scores, these are often insufficient to build clinician confidence. Recent 

years have seen the introduction of explainable artificial intelligence (XAI) methods into CKD 



research. SHAP have been applied in a growing number of primary studies to provide case-

specific interpretability. Lundberg and Lee (2017) demonstrated SHAP’s ability to deliver 

consistent global explanations, while Ribeiro et al. (2016) showed LIME’s effectiveness in 

providing intuitive local approximations. Secondary works, such as Vayena et al. (2018), stress 

that interpretability is no longer optional but essential for clinical adoption. Despite this, 

Agarwal et al. (2021) note that only a minority of CKD prediction studies currently integrate 

XAI, indicating a major gap in the literature. 

In summary, both primary and secondary research shows that methodologies for CKD 

prediction have grown more sophisticated over time, evolving from simple imputation and 

traditional classifiers to advanced ensemble models and explainability tools. Nevertheless, 

significant challenges remain: small datasets, inconsistent preprocessing, and limited focus on 

interpretability and ethics. These challenges reinforce the need for integrated approaches, such 

as the one proposed in this project, which balances predictive accuracy with transparency and 

responsible data use. 

2.7 Interpretability and XAI in Healthcare 

The application of machine learning in healthcare highlights a key tension between predictive 

accuracy and interpretability. While advanced models such as ensemble learners and neural 

networks achieve high accuracy, their “black box” nature limits clinical trust and 

accountability. In conditions like CKD, where early detection is critical, clinicians must 

understand not only whether a patient is at risk but also which variables influenced the decision 

(Aljaaf et al., 2018; Rajkomar et al., 2019). 

Explainable AI (XAI) techniques have been introduced to address this gap. SHAP (Lundberg 

and Lee, 2017) assigns importance values to each feature for both global and local predictions, 

while LIME (Ribeiro et al., 2016) provides simplified, case-specific explanations. Studies 

applying these methods in CKD prediction demonstrate that features such as serum creatinine 

and haemoglobin consistently drive predictions, aligning with established clinical knowledge 

(Ghosh et al., 2019). 

Beyond technical clarity, interpretability has ethical importance. Regulatory frameworks, 

including GDPR, emphasise the “right to explanation” for algorithmic decisions (Vayena et al., 

2018). By improving transparency, XAI fosters clinician confidence, reduces hidden biases, 

and supports responsible integration of AI in healthcare. Despite their potential, secondary 



reviews suggest XAI remains underused, underscoring the value of this project’s emphasis on 

explainability. 

2.8 Chapter Conclusion 

The literature on CKD prediction demonstrates significant progress in the application of 

machine learning, particularly in areas such as data preprocessing, feature selection, and 

classification models. Primary studies have shown that algorithms including Random Forest, 

XGBoost, and SVM deliver high accuracy, while secondary reviews confirm their robustness 

across multiple clinical datasets (Huang et al., 2020; Kourou et al., 2015). However, the 

majority of existing work has prioritised predictive performance, often overlooking essential 

dimensions such as interpretability, ethical responsibility, and clinical usability. 

The review also highlighted variability in methodological choices, with inconsistent imputation 

strategies and evaluation metrics contributing to differences in reported results (Jerez et al., 

2010; Agarwal et al., 2021). While ensemble methods frequently outperform traditional 

classifiers, their black-box nature reduces transparency, limiting their acceptance in medical 

practice (Rajkomar et al., 2019). 

These gaps underline the need for integrated approaches that combine robust prediction with 

interpretability and ethical safeguards. By employing multiple classifiers, advanced 

preprocessing, and explainable AI methods such as SHAP, the proposed project addresses these 

limitations directly. In doing so, it not only aims to improve diagnostic accuracy for CKD but 

also provides clinicians with transparent, actionable insights, ensuring that machine learning 

solutions are both effective and trustworthy in practice. 

 

 

 

 

 

 

 

 



 

 

Chapter 3- System Design 
 

3.1 Introduction to System Design 

System design is a crucial phase in transforming theoretical concepts into a practical framework 

for machine learning applications. In healthcare, particularly in predicting chronic kidney 

disease (CKD), design ensures that the workflow is reliable, interpretable, and aligned with 

clinical requirements. CKD data typically consist of heterogeneous features such as blood test 

results, physiological indicators, and demographic attributes. Without a systematic design, 

issues like missing values, imbalanced data, and inconsistent feature representation could 

significantly undermine predictive accuracy and generalisability (Jerez et al., 2010). 

A well-planned design adopts a modular approach, where each stage—data preprocessing, 

feature selection, model training, evaluation, and interpretability—is carefully connected. For 

instance, preprocessing prepares clean inputs, while the evaluation stage uses metrics such as 

accuracy, recall, and ROC-AUC to benchmark classifiers. The integration of SHAP-based 

explainability further enhances transparency, offering clinicians insights into why a model 

predicts a patient as at risk. 

Importantly, system design bridges research outcomes and clinical application by ensuring not 

only predictive power but also reproducibility, scalability, and adherence to ethical standards 

such as GDPR (Vayena et al., 2018). This structured foundation supports the project’s aim of 

delivering an accurate, interpretable, and clinically relevant CKD prediction system. 

3.2 System Architecture Flow 

The system architecture for the proposed chronic kidney disease (CKD) prediction model is 

designed to provide an end-to-end pipeline that ensures data reliability, model robustness, and 

interpretability. The overall flow is illustrated in Figure 1 

The architecture begins with the collection of clinical input data, which is transformed into 

structured raw clinical datasets. A comprehensive preprocessing and feature engineering layer 

is then applied, which involves data cleaning, categorical encoding, normalization, scaling, and 

feature selection. These steps are essential in clinical machine learning workflows to reduce 

noise, handle missing values, and improve the quality of features for subsequent modeling 



(Shahid et al., 2020; Choudhury et al., 2021). The processed dataset is then partitioned into 

training and testing subsets to ensure unbiased evaluation of model performance (Goodfellow, 

Bengio and Courville, 2016). 

Following preprocessing, multiple machine learning classifiers are trained in parallel, including 

Logistic Regression, Support Vector Machine (SVM), Random Forest, LightGBM, Naïve 

Bayes, and XGBoost. Each model is systematically evaluated using established metrics such 

as accuracy, precision, recall, F1-score, and ROC-AUC. Comparative evaluation across models 

allows for a fair and transparent determination of the best-performing algorithm (Kotsiantis, 

Zaharakis and Pintelas, 2007; Chen and Guestrin, 2016). 

Once the optimal model is identified—in this case, XGBoost—an explainability layer is 

introduced to improve trust and transparency in clinical decision-making. The SHAP (SHapley 

Additive exPlanations) framework is employed to assess feature importance and provide local 

and global interpretability of predictions (Lundberg and Lee, 2017). This ensures that 

predictions are not treated as “black box” outputs but instead are contextualised within clinical 

reasoning, thereby improving practitioner trust and model accountability (Carvalho, Pereira 

and Cardoso, 2019). 

Overall, this system architecture integrates the essential stages of data preprocessing, model 

training, comparative evaluation, and interpretability, making it suitable for real-world 

healthcare applications where reliability and transparency are paramount. 

 

 



 

Figure 1 System Architecture of the CKD Prediction Model 

 

3.3 Data Flow Diagrams (DFDs) 

 

The data flow diagrams (DFDs) illustrate the logical movement of information within the 

proposed Chronic Kidney Disease (CKD) prediction system. These diagrams are crucial for 

understanding how external entities, system processes, data stores, and outputs interact to 

support accurate predictions and clinical decision-making (Yourdon, 1989; Dennis et al., 2015). 

Level 0 Data Flow Diagram (Context View) 

The Data Flow Diagram (DFD) in Figure 2 provides a high-level contextual view of how data 

moves through the Chronic Kidney Disease (CKD) prediction system. This diagram outlines 

the interaction between external users, system processes, and outputs, ensuring clarity in how 

the system supports both clinical decision-making and research analysis (Yourdon, 1989; 

Dennis et al., 2015). 

The process begins with researchers and clinicians, who act as the primary external entities. 

They are responsible for entering patient data into the system through the Input Patient Data 

module. This input is critical, as the system depends on accurate and complete records to 

generate reliable predictions. The submitted information is directed to the Validate Data 



process, which ensures that values are consistent, complete, and free from errors. If any 

irregularities are detected, the system triggers the Show Error Message function, prompting the 

user to correct or reselect patient data. This validation loop prevents the inclusion of incorrect 

or incomplete information in the predictive pipeline. 

Once validated, the data is processed by the CKD Prediction System, which applies machine 

learning algorithms to assess the likelihood of CKD occurrence. At this stage, the system 

branches into two outputs: a Risk Report, which provides the probability of CKD, and a SHAP-

based Interpretability Report, which explains the model’s decision-making by identifying 

influential features. These dual outputs strengthen the system’s transparency, making results 

interpretable for both medical experts and researchers. 

The generated reports are then consolidated in the Review Results stage, where users can 

evaluate prediction outcomes. This supports evidence-based decisions, ensuring that clinicians 

not only receive a probability score but also gain interpretability insights regarding patient-

specific risk factors. Finally, the process concludes with Take Clinical Action, where 

practitioners can translate system outputs into real-world interventions, such as early referrals, 

further diagnostic testing, or lifestyle recommendations. 

This contextual-level DFD demonstrates the system’s ability to streamline the end-to-end 

prediction workflow: from raw patient data entry to actionable medical decision-making. By 

integrating error handling, prediction, and interpretability, the design enhances trust, accuracy, 

and usability in a clinical research setting (Hevner et al., 2004; Sommerville, 2016). 

 

 



 

Figure 2 Data Flow Diagram – Level 0 (Contextual Representation) 

Data Flow Diagram (Level 1 – Detailed Flow) 

The Level 1 Data Flow Diagram (DFD) illustrated in Figure 3 provides a detailed breakdown 

of the processes involved in the Chronic Kidney Disease (CKD) prediction pipeline. Unlike 

the Level 0 contextual diagram, which focuses on the overall interaction between users and the 

system, this diagram decomposes the system into specific functional modules that handle data 

preparation, model development, and model assessment (Gane & Sarson, 1979; Dennis et al., 

2015). 

The process begins with external entities such as the Dataset Repository and 

Clinician/Researcher, who provide the raw input data. This dataset flows into the P1: Data 

Preprocessing module, where it undergoes cleaning, normalization, and transformation to 

ensure suitability for machine learning. The result is a Processed Dataset (D1), which is then 

passed to the next stage. 

Following preprocessing, the data enters P2: Train-Test Split, where it is divided into Training 

Data and Testing Data. This division is critical to avoid overfitting and to allow unbiased 

performance evaluation of the models (Goodfellow et al., 2016). 

The Training Data proceeds to P3: Model Training, where machine learning algorithms are 

applied to develop predictive models. The output is Trained Models (D2), which capture 



patterns and risk factors associated with CKD. These trained models are then passed on for 

assessment. 

In the P4: Model Evaluation stage, the trained models are tested using the Testing Data and 

evaluated for accuracy, precision, recall, and other key performance indicators. This process 

generates Evaluation Results (D3) that highlight the model’s reliability. 

To enhance transparency, the Explainability Layer (SHAP) is integrated into the assessment 

process. This layer interprets model outputs by identifying which features most strongly 

influenced predictions, providing Feature Importance + CKD Prediction Results. These outputs 

make the system interpretable for medical professionals, ensuring clinical trust and adoption 

(Lundberg & Lee, 2017). 

Finally, the results flow back to the Clinician/Researcher, who can review the prediction 

outcomes, interpret the underlying factors, and integrate the findings into medical decision-

making or further research. 

This Level 1 DFD illustrates the system’s modular architecture, highlighting how raw patient 

datasets progress through structured stages of preprocessing, training, validation, and 

interpretability. By ensuring transparency and accuracy, the system not only predicts CKD risk 

but also provides clinicians with actionable and explainable insights (Hevner et al., 2004; 

Sommerville, 2016). 

 

 



 

Figure 3 Data Flow Diagram – Level 1 (Detailed Flow) 

 

3.4 Use Case Diagram 

The Use Case Diagram illustrated in Figure 4 represents the interaction of two primary 

stakeholders—Clinicians and Researchers—with the Chronic Kidney Disease (CKD) 

Prediction System. This model highlights the flow of activities, responsibilities, and shared 

outcomes, thereby capturing how both user groups engage with the system to generate 

actionable insights. 

The Clinician pathway begins with inputting patient data into the system. Once the data is 

submitted, the process moves to the validation stage, where the system checks for completeness 

and consistency. Successful validation allows clinicians to proceed to the review results 



activity. At this stage, they can directly interpret outputs, such as CKD risk scores and 

interpretability explanations, before taking the final step of clinical action, where the decision 

support provided by the system informs treatment, monitoring, or further investigation. This 

pathway ensures that clinicians are empowered with reliable, patient-centered information for 

evidence-based decision-making. 

The Researcher pathway follows a parallel but more analytical flow. After inputting and 

validating patient data, researchers progress to running the prediction model, where machine 

learning algorithms generate outputs. From this, two distinct but complementary reports are 

produced: a CKD risk prediction report, which quantifies patient risk, and a SHAP 

interpretability report, which highlights feature importance and justifies model decisions. Both 

reports are then reviewed in the results interpretation stage, ensuring researchers can evaluate 

model accuracy, uncover trends, and assess explainability. 

A key feature of the diagram is the shared “Review Results” node, which connects both 

clinicians and researchers. This illustrates the collaborative aspect of the system, where 

clinicians may access model-derived reports generated by researchers. The inclusion of dashed 

result access lines emphasizes cross-role data availability while maintaining clarity of role-

specific responsibilities. 

The use of swimlanes reinforces the distinction between the clinical decision-making domain 

and the research evaluation domain, while also highlighting their points of convergence. The 

integration of interpretability outputs ensures transparency, aligning with current 

recommendations in AI-based healthcare systems (Ribeiro et al., 2016; Lundberg & Lee, 2017). 

Overall, this Use Case Diagram encapsulates the dual functionality of the CKD Prediction 

System: supporting real-time clinical decision-making while also providing a framework for 

research and model validation. It balances efficiency, transparency, and collaboration, making 

it a valuable tool for healthcare deployment and ongoing system refinement. 

 



 

Figure 4 Use Case Diagram of the CKD Prediction System illustrating clinician and 

researcher interactions 

 

3.5 Social, Legal and Ethical Considerations in CKD Prediction System 

The introduction of a machine learning-based Chronic Kidney Disease (CKD) prediction 

system can significantly support healthcare practice. However, beyond technical accuracy, it is 

vital to reflect on the wider social, legal and ethical dimensions that accompany such systems. 

Responsible implementation ensures that the technology not only provides reliable predictions 

but also respects patient rights, regulatory frameworks and broader societal expectations. 

Social Issues 

On the social front, accessibility and fairness are major concerns. Predictive systems in 

healthcare are only effective if they serve a wide spectrum of patients. When datasets lack 

representation of certain demographic groups, there is a risk of biased outputs, which may lead 

to inequitable care and reinforce existing disparities (Rajkomar et al., 2018). Equally important 

is the impact on patient–clinician trust. If clinicians rely excessively on automated predictions 

without providing clear explanations, patients may feel alienated or less confident in their care. 

To mitigate this, the inclusion of interpretable models and tools such as SHAP strengthens 

transparency, enabling patients and clinicians to better understand the rationale behind 

predictions (Lundberg and Lee, 2017). 

Legal Issues 

The legal framework surrounding predictive healthcare systems is particularly stringent. In 

Europe and the UK, compliance with the General Data Protection Regulation (GDPR) is 

essential when handling patient health records. This includes ensuring lawful processing, 

obtaining informed consent, and applying strong anonymisation measures (Voigt and Von dem 

Bussche, 2017). Another legal challenge relates to liability. If the system generates an incorrect 

risk score that influences treatment decisions, questions arise regarding accountability—



whether responsibility lies with the developer, the healthcare provider, or the institution that 

deployed the system (Price et al., 2019). Legal clarity is therefore critical for fostering safe 

adoption. 

Ethical Issues 

Ethically, the system must uphold patient privacy, dignity, and fairness. Protection of sensitive 

medical information is fundamental, as misuse or breaches can have damaging personal 

consequences (Floridi et al., 2018). A second concern is algorithmic fairness: predictions 

should not disadvantage patients on the basis of gender, ethnicity, or socioeconomic 

background. Moreover, transparency is a central ethical requirement, as clinicians must be able 

to justify predictions to patients in ways that support informed decision-making. Importantly, 

the system must be seen as a supportive tool rather than a replacement for human expertise, 

ensuring that final clinical decisions remain with trained professionals. 

Summary 

In sum, embedding social, legal and ethical considerations into the design of the CKD 

prediction framework is as important as technical development. Addressing these dimensions 

ensures that the system contributes positively to healthcare, supports patient trust, and complies 

with regulatory obligations, while advancing responsible use of artificial intelligence in 

medicine. 

 

 

 

 

 

 

 

 

 

 



Chapter 4-Methodology 
 

The methodology of this study outlines the structured approach adopted to develop and 

evaluate a predictive system for Chronic Kidney Disease (CKD). A clear framework ensures 

that each stage, from data collection to model interpretability, is both rigorous and transparent. 

The process includes dataset description, preprocessing, algorithm selection, training, 

evaluation, and explainability measures. Given the sensitivity of healthcare applications, this 

methodology balances technical accuracy with ethical considerations, ensuring compliance 

with data protection regulations and fairness in prediction. The following sections provide a 

detailed explanation of each step in the research pipeline (Kotu and Deshpande, 2019). 

4.1 Dataset Description 

This project makes use of the Chronic Kidney Disease (CKD) dataset obtained from the UCI 

Machine Learning Repository, a recognised source for benchmark data in medical prediction 

research (Dua and Graff, 2019). The dataset is presented in tabular form and contains a wide 

range of clinical and physiological attributes that are commonly examined in kidney function 

assessment. These include demographic details such as age, as well as clinical measurements 

like blood pressure, serum creatinine, haemoglobin, blood glucose, and albumin levels. Such 

features are well aligned with the diagnostic criteria typically used in nephrology, making the 

dataset suitable for developing a prediction model. 

Each entry in the dataset is labelled as either CKD or non-CKD, enabling a binary classification 

task. A combination of numerical and categorical attributes is present; for example, test values 

are expressed in continuous scales while some medical indicators are recorded as categorical 

responses, such as “yes” or “no.” This diversity in data types reflects the complexity of 

healthcare records and highlights the importance of appropriate preprocessing steps before 

modelling (Liang et al., 2020). 

As the dataset is secondary and anonymised, no personally identifiable patient information is 

disclosed, which supports its ethical use in research. However, potential limitations still exist. 

Since the dataset may originate from a specific population or healthcare setting, issues such as 

demographic imbalance or limited generalisability to wider clinical contexts must be 

acknowledged (Rajkomar et al., 2018). These aspects are important to consider when 

interpreting the performance of predictive models, as healthcare outcomes can vary across 

different patient groups. 



Despite these challenges, the dataset provides a robust foundation for experimentation. Its 

relevance to real-world clinical practice, accessibility for academic use, and well-defined 

attributes make it a valuable resource for investigating machine learning methods in the early 

detection of CKD. 

4.2 Data Preprocessing 

Preprocessing plays an essential role in preparing healthcare datasets, as raw clinical data is 

often incomplete, inconsistent, or stored in different formats. In predictive modelling, 

especially in medical domains, the reliability of outcomes depends heavily on how effectively 

the data is cleaned and structured before model training (Han, Pei and Kamber, 2011). 

The CKD dataset contained several missing values across important clinical attributes such as 

blood pressure, serum creatinine, and albumin levels. Discarding these records would have 

significantly reduced the dataset’s size, leading to weaker generalisation of models. Therefore, 

imputation methods were adopted to handle missing data. For numerical variables, the mean 

or median of the available values was used, while categorical attributes such as “yes/no” 

responses were replaced with the most frequent category. This ensured that valuable patient 

records were retained while reducing the risk of bias introduced by incomplete data (Little and 

Rubin, 2019). 

Another key step involved converting categorical features into a machine-readable format. For 

example, qualitative indicators like “present/absent” or “normal/abnormal” were encoded into 

numerical values through label encoding. This transformation allowed algorithms to process 

the features effectively without losing the original meaning of the attributes. 

Scaling and normalisation were also applied to continuous variables. Since features like serum 

creatinine and blood glucose exist on different numerical ranges, normalisation brought them 

into a consistent scale. This step is particularly important for algorithms sensitive to feature 

magnitude, such as Logistic Regression and Support Vector Machines, where variations in 

scale could otherwise skew the model’s learning process (Shalev-Shwartz and Ben-David, 

2014). 

Finally, the dataset was divided into training and testing sets, typically following an 80–20 

split. This partitioning provided a fair assessment of model performance by ensuring that 

evaluation was carried out on unseen data. Such separation is crucial in medical prediction 

tasks, as it mirrors real-world scenarios where the system must classify new patient records 

that were not part of the training data. 



In summary, through careful handling of missing values, encoding of categorical attributes, 

normalisation of features, and appropriate data partitioning, the preprocessing stage 

transformed the raw dataset into a structured form. These steps laid a strong foundation for 

reliable model development and accurate CKD prediction. 

4.3 Feature Selection and Engineering 

Selecting and refining features is one of the most important steps in developing a reliable 

machine learning model, particularly in healthcare prediction tasks such as CKD diagnosis. A 

dataset may contain several attributes, but not all contribute equally to the prediction outcome. 

Retaining irrelevant or redundant features can introduce noise, reduce computational 

efficiency, and in some cases, even lower prediction accuracy. Therefore, feature selection 

ensures that only the most informative and clinically significant attributes are preserved, while 

feature engineering focuses on transforming or creating variables that can improve the model’s 

performance (Guyon and Elisseeff, 2003). 

The CKD dataset consists of demographic details, clinical parameters, and laboratory 

measurements. Attributes such as serum creatinine, albumin, haemoglobin, and blood pressure 

are widely recognised as key indicators of kidney health and are therefore expected to have 

strong predictive power (Ryu et al., 2020). To determine the relative importance of each 

variable, statistical methods such as correlation analysis and Chi-square testing were applied. 

This allowed the identification of attributes with a strong association to CKD outcomes, while 

variables with weak or inconsistent relationships were considered for removal. The use of 

domain knowledge was also essential, as clinically significant variables were retained even if 

their statistical weight was modest, ensuring that the final model remained medically 

interpretable (Kourou et al., 2015). 

In addition to selection, feature engineering was undertaken to improve the dataset’s predictive 

capacity. Numerical variables were standardised to maintain consistency across different 

measurement scales, preventing bias in algorithms that are sensitive to feature magnitude. 

Categorical attributes, such as “yes/no” responses, were encoded into binary values to allow 

smooth integration into the models. In some cases, new features were derived, such as ratios 

between blood markers, which have been reported in medical literature to provide additional 

insight into patient conditions (Shahid, Rappon and Berta, 2021). 

Through this dual process of careful selection and thoughtful engineering, the dataset was 

transformed into a compact and clinically meaningful representation. This step not only 



reduced the complexity of the modelling task but also enhanced interpretability and accuracy, 

which are both essential when developing machine learning systems for healthcare 

applications. 

4.4 Model Selection and Training Process 

The effectiveness of any predictive healthcare system is highly dependent on the choice of 

algorithms. Since Chronic Kidney Disease (CKD) diagnosis involves heterogeneous data 

types, including both categorical and continuous attributes, as well as non-linear dependencies 

between clinical features, it was essential to evaluate a diverse set of machine learning models. 

The goal was to identify a model that balances predictive accuracy with clinical interpretability 

and reliability. 

To achieve this, six algorithms were selected: Logistic Regression, Support Vector Machine, 

Random Forest, XGBoost, LightGBM, and Naïve Bayes. Each was chosen to represent 

different methodological families, ranging from traditional statistical approaches to advanced 

ensemble and boosting methods. This diverse selection ensured that both simple, interpretable 

models and more complex, high-performing classifiers were assessed. Training was conducted 

using an 80–20 train-test split, supported by hyperparameter tuning to maximise performance. 

Table 1  – Comparative rationale for including machine learning models in CKD 

prediction 

Model Rationale for 

Inclusion 

Strengths in 

Healthcare/ CKD 

Prediction 

Key References 

Logistic Regression Baseline for binary 

classification. 

Simple, 

interpretable, widely 

trusted in clinical 

practice; outputs 

probability 

estimates. 

Hosmer, Lemeshow 

and Sturdivant 

(2013) 

Support Vector 

Machine (SVM) 

Handles high-

dimensional, non-

linear data. 

Robust classification 

where clinical 

variables are not 

linearly separable. 

Cortes and Vapnik 

(1995) 



Random Forest Ensemble of trees 

reduces overfitting. 

Robust to noise and 

missing values; 

provides feature 

importance insights. 

Breiman (2001) 

XGBoost Gradient boosting 

with strong 

predictive accuracy. 

Captures complex 

feature interactions; 

widely used in 

structured health 

datasets. 

Chen and Guestrin 

(2016) 

LightGBM Boosting framework 

optimised for speed 

and scale. 

Efficient with large 

structured datasets; 

highly scalable in 

healthcare settings. 

Ke et al. (2017) 

Naïve Bayes (NB) Probabilistic 

benchmark. 

Lightweight, 

interpretable, and 

effective for smaller 

datasets. 

Rish (2001) 

 

Discussion of Models 

Logistic Regression (LR): Logistic Regression has been extensively used in healthcare for 

predicting binary outcomes, such as disease presence or absence. In CKD prediction, LR is 

valuable due to its interpretability, enabling clinicians to understand how each factor (e.g., 

serum creatinine, albumin, blood pressure) contributes to the overall risk. A classic example is 

the Framingham risk model for cardiovascular disease, which successfully applied logistic 

regression to predict heart disease risks (D’Agostino et al., 2008). Its simplicity makes it an 

ideal benchmark against more complex models. 

Support Vector Machine (SVM): SVM is highly effective for datasets with overlapping or  -

linear relationships. By applying kernel functions, it can identify complex decision boundaries 

between CKD and non-CKD cases. In medical diagnostics, SVM has been used to classify 

diabetes by learning from subtle variations in biochemical markers (Polat and Güneş, 2007). 

Similarly, in CKD, SVM can identify patterns between lab results like hemoglobin and albumin 

that might not be apparent with linear models. 



Random Forest (RF): Random Forest builds multiple decision trees and aggregates their 

results to improve generalisation. This approach reduces overfitting, which is a common risk 

in small-to-medium-sized clinical datasets. RF has been used to predict diabetes complications 

by ranking glucose and BMI as top predictive factors (Rahman et al., 2020). In CKD, RF can 

provide accurate predictions and also generate feature importance scores, helping clinicians 

identify which lab parameters, such as serum potassium or blood urea, are most influential in 

disease progression. 

XGBoost: XGBoost, an advanced gradient boosting algorithm, has become a benchmark in 

structured data competitions due to its high accuracy. It is particularly effective at capturing 

complex feature interactions. In healthcare, XGBoost has been applied to sepsis prediction, 

outperforming logistic regression and SVM in critical care settings (Delahanty et al., 2019). 

For CKD, XGBoost delivers strong performance while requiring additional interpretability 

methods such as SHAP values to ensure transparency for clinical adoption. 

LightGBM: LightGBM, like XGBoost, belongs to the boosting family but is optimised for 

speed and scalability. It can efficiently handle very large structured datasets, making it suitable 

for deployment in hospitals with vast electronic health records (EHRs). For instance, 

LightGBM has been successfully applied to predict hospital readmissions in cardiovascular 

patients, achieving comparable results to XGBoost but with faster training times (Zhang et al., 

2020). In CKD prediction, LightGBM ensures scalability if extended to nationwide datasets. 

Naïve Bayes (NB): Although simple, Naïve Bayes provides a useful baseline. It assumes 

independence among features, which is rarely the case in healthcare, but it can still perform 

reasonably well with smaller datasets. NB has been used to classify early cancer risk based on 

questionnaire data, providing fast and interpretable outputs (Rish, 2001). In CKD, it offers a 

contrast to advanced methods, highlighting the superiority of ensemble approaches while 

maintaining computational efficiency. 

4.5 Model Evaluation Metrics 

The evaluation of predictive performance was conducted using multiple metrics to ensure 

clinical reliability. Table presents the definition, formula, and significance of each metric in the 

context of CKD prediction. 

 

 



Table 2 Evaluation metrics for CKD prediction models: definition, formula, and clinical 

significance 

Metric Formula Description Clinical 

Significance in 

CKD Prediction 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Proportion of total 

correct predictions. 

Provides overall 

performance but 

may be misleading in 

imbalanced datasets. 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Proportion of 

predicted positives 

that are true 

positives. 

High precision 

ensures that non-

CKD patients are not 

incorrectly classified 

as CKD (reduces 

false alarms) 

Recall (Sensitivity) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Proportion of actual 

positives correctly 

identified. 

Crucial for early 

CKD detection, 

minimising missed 

diagnoses. 

F1-Score 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 Harmonic mean of 

precision and recall. 

Balances the trade-

off between 

precision and recall, 

ensuring reliable 

predictions 

ROC-AUC Area under the ROC 

curve 

Measures the ability 

of the classifier to 

discriminate 

between classes 

across all thresholds. 

High ROC-AUC 

indicates robust 

discrimination 

between CKD and 

non-CKD patients, 

independent of cut-

off 

 

 



 

Where: 

• TP = True Positives (correctly predicted CKD patients) 

• TN = True Negatives (correctly predicted non-CKD patients) 

• FP = False Positives (non-CKD patients misclassified as CKD) 

• FN = False Negatives (CKD patients misclassified as healthy) 

These metrics were chosen to ensure both predictive accuracy and clinical reliability. Accuracy 

offers an overall picture but may not suffice when class imbalance exists (Sokolova and 

Lapalme, 2009). Precision is essential to avoid unnecessary anxiety for healthy individuals 

misclassified as CKD, while recall is critical to ensure that true CKD cases are not overlooked 

(Powers, 2011). The F1-score provides a balanced evaluation in scenarios with uneven class 

distribution, and ROC-AUC offers a threshold-independent assessment of discriminatory 

power (Bradley, 1997; Chicco and Jurman, 2020). 

4.6 Model Interpretability 

In medical applications, it is not enough for a predictive model to achieve high accuracy; it 

must also provide insights that are understandable to clinicians. Doctors are unlikely to adopt 

a system that functions as a “black box,” where predictions cannot be explained or verified 

against medical reasoning. For this reason, interpretability becomes a central requirement when 

developing machine learning systems for healthcare decision support (Doshi-Velez and Kim, 

2017). 

In this study, interpretability was addressed using SHAP (SHapley Additive exPlanations), 

applied to the best-performing model, XGBoost. SHAP is built on principles of cooperative 

game theory, where each feature is considered as a “player” contributing to the outcome of a 

prediction. The technique assigns a value to each feature that represents its contribution, either 

positive or negative, towards the prediction (Lundberg and Lee, 2017). 

The SHAP analysis of the CKD dataset revealed that serum creatinine, haemoglobin, blood 

pressure, blood urea, and albumin levels were among the most influential factors in the 

classification of patients. This result is consistent with established clinical knowledge, as 

abnormalities in these measures are well-known indicators of kidney dysfunction. SHAP 

provided both a global view of feature importance across the dataset and local explanations for 



individual patients. For example, if a patient was identified as high risk, SHAP values 

highlighted whether this was driven by elevated serum creatinine or low haemoglobin, which 

gave the decision medical credibility. 

The inclusion of SHAP explanations added significant value to the project. Not only did it 

confirm that the model’s reasoning aligned with existing medical understanding, but it also 

provided transparency that is essential for ethical and clinical adoption. Interpretability also 

helps to uncover potential biases in the model and ensures compliance with the growing 

demand for explainability in artificial intelligence applications in healthcare (Caruana et al., 

2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 5- Implementation and Results 
 

The performance of six machine learning algorithms—Logistic Regression, Support Vector 

Machine (SVM), Random Forest, LightGBM, XGBoost, and Naïve Bayes—was evaluated on 

the chronic kidney disease dataset. The evaluation used widely adopted metrics including 

Accuracy, Precision, Recall, F1-score, and ROC-AUC, which provide complementary insights 

into model effectiveness in detecting CKD cases. 

Table 3 Performance comparison of machine learning classifiers for CKD prediction 

Model Accuracy Precision Recall F1-Score ROC-AUC 

Logistic 

Regression 

0.99 0.91 0.98 0.94 1.000 

Support 

Vector 

Machine 

0.98 0.99 0.74 0.82 0.9800 

Random 

Forest 

0.99 0.97 0.88 0.92 0.9983 

LightGBM 0.99 0.92 0.94 0.93 0.9983 

XGBoost 0.99 0.96 0.94 0.95 1.0000 

Naïve Bayes 0.81 0.57 0.90 0.57 0.9000 

 

To provide a clearer comparative picture, the results are also visualised in Figure 5, which 

illustrates the differences across models for the four main performance measures. 

 



 

Figure 5  Comparative performance of classifiers based on Accuracy, Precision, Recall, and 

F1-score 

 

The results demonstrate that Logistic Regression, Random Forest, LightGBM, and XGBoost 

all achieved near-perfect predictive performance, with accuracies close to 99%. Among these, 

XGBoost stood out, yielding a balanced performance across all metrics, with both Precision 

and Recall above 0.95, and a perfect ROC-AUC score of 1.0000. Logistic Regression also 

performed strongly, reaffirming the robustness of linear models for structured medical data. 

By contrast, Naïve Bayes performed significantly worse, with an accuracy of 81% and a much 

lower precision (0.57), despite achieving a recall of 0.90. This imbalance indicates that Naïve 

Bayes generated a high number of false positives, making it less reliable in a medical setting 

where misclassification can have serious implications. 

The SVM achieved relatively strong performance (98% accuracy), but its recall value (0.74) 

was substantially lower than other advanced models, suggesting it missed a notable number of 

positive CKD cases. Such an outcome would be problematic in real-world clinical applications 

where sensitivity to true CKD cases is vital. 

Overall, the findings confirm that ensemble methods (Random Forest, LightGBM, XGBoost) 

consistently outperform simpler baselines in balancing sensitivity and specificity. The near-

perfect ROC-AUC values further highlight their discriminative capability. For this study, 



XGBoost was selected for further interpretability analysis using SHAP, as it combined the best 

predictive power with interpretability support. 

5.2 Model Interpretability with SHAP 

The strength of any predictive system in healthcare depends not only on its statistical accuracy 

but also on its interpretability. SHAP (SHapley Additive exPlanations) is a game-theoretic 

approach that attributes each prediction to individual features, thereby quantifying how much 

each variable contributes to the output (Lundberg & Lee, 2017). In the context of Chronic 

Kidney Disease (CKD), this interpretability ensures that the model’s recommendations are 

aligned with established medical reasoning and transparent for clinicians and patients. 

5.2.1 Global Interpretability – SHAP Summary (Beeswarm Plot) 

The SHAP summary (beeswarm) plot illustrates the global impact of each feature on the 

Chronic Kidney Disease (CKD) prediction model. Each point represents an individual patient, 

where the colour scale indicates feature value (blue = low, red = high), and the x-axis shows 

the SHAP value, reflecting how much the feature pushed the prediction towards CKD or non-

CKD. 

Glomerular Filtration Rate (GFR) emerges as the most influential predictor, with lower values 

(blue) strongly associated with CKD risk, consistent with its role as a primary diagnostic 

marker. C3/C4 complement proteins also show significant impact, where reduced levels push 

predictions toward CKD, highlighting immune-related pathways in renal disease. Blood 

pressure contributes heavily, with higher values (red) linked to increased CKD likelihood, in 

line with hypertension’s well-established role as a comorbidity. Blood urea nitrogen (BUN), 

oxalate levels, and urine pH show moderate influence, capturing metabolic dysfunctions that 

can exacerbate kidney decline. 

Lifestyle factors such as smoking, alcohol consumption, diet, and water intake have smaller 

but non-negligible effects, reflecting the holistic nature of CKD risk. Overall, the beeswarm 

plot demonstrates that the model’s predictions align with established medical knowledge while 

capturing nuanced patient-level variability. 

 



 

Figure 6 SHAP Summary (Beeswarm) Plot of Feature Contributions in CKD Prediction 

5.2.2 Feature Importance Ranking – Mean SHAP Values 

Figure 7, SHAP bar chart highlights the average absolute contribution of each feature to the 

model’s predictions for Chronic Kidney Disease (CKD). The x-axis represents the mean SHAP 

value, which quantifies the overall importance of a feature across all patients. Larger values 

indicate stronger influence on prediction outcomes. 



The results show that Glomerular Filtration Rate (GFR) is the dominant predictor, contributing 

an average SHAP impact of +1.83. This finding is consistent with medical literature, where 

GFR decline is a hallmark of CKD progression. The C3/C4 complement proteins follow closely 

(+1.52), underlining the role of immune and inflammatory processes in kidney function 

deterioration. Blood pressure (+0.87) and Blood Urea Nitrogen (BUN) (+0.73) also emerge as 

highly influential, reflecting the combined metabolic and cardiovascular burdens often 

observed in CKD patients. 

Other biochemical features such as oxalate levels, urine pH, serum calcium, and serum 

creatinine show moderate but meaningful contributions. Meanwhile, lifestyle and behavioural 

indicators, collectively grouped under “Sum of 10 other features,” also exert measurable 

though smaller influence (+0.21). 

This plot emphasizes that the predictive model is strongly anchored in medically validated 

biomarkers while incorporating additional metabolic and lifestyle signals to enhance prediction 

robustness. 

 

 

Figure 7 SHAP Feature Importance (Mean Absolute Contribution) 

 



5.2.3 Local Interpretability – SHAP Waterfall Plot 

The SHAP waterfall plot provides a detailed breakdown of how specific features contribute to 

the prediction for a single patient case. The baseline value (E[f(X)] = 9.078) represents the 

average model output across all patients, serving as a reference point. Each feature either 

increases (red bars) or decreases (blue bars) the prediction value, with the cumulative sum 

leading to the final predicted output (f(x) = 7.951). 

In this instance, glomerular filtration rate (GFR) has the strongest negative contribution 

(−3.81), pushing the prediction towards a lower disease risk. Similarly, the C3/C4 complement 

ratio also decreases the risk (−2.49), reflecting favorable immune system function. Conversely, 

blood urea nitrogen (BUN) (+2.24) and blood pressure (+1.68) exert significant positive 

effects, strongly elevating the likelihood of CKD. 

Smaller but meaningful contributions include urine pH (+0.74), oxalate levels (+0.19), and 

serum calcium (+0.15), all slightly increasing disease risk. On the other hand, water intake 

(−0.13) acts as a protective factor, reducing risk marginally. Collectively, other minor features 

contribute +0.18. 

This visualization is particularly valuable in a clinical setting, as it explains model reasoning 

at the patient level, supporting transparent and interpretable decision-making. 

 



 

Figure 8 SHAP Waterfall Plot of an Individual Prediction 

 

5.3 Comparative Discussion of Model Performance 

The comparative evaluation of the six models – Naïve Bayes, Logistic Regression, Support 

Vector Machine (SVM), Random Forest, XGBoost, and LightGBM – highlights significant 

differences in predictive capacity and robustness. Among these, the ensemble-based gradient 

boosting models (XGBoost and LightGBM) demonstrated the highest levels of performance, 

each achieving an overall accuracy of 99% with balanced precision, recall, and F1-scores 

across both majority and minority classes. Logistic Regression and Random Forest closely 

followed, while SVM achieved slightly lower recall on the minority class. In contrast, Naïve 

Bayes underperformed, with a weighted accuracy of 81% but poor precision for the minority 

class. 

The poor performance of Naïve Bayes can be attributed to its underlying assumption of 

conditional independence among predictors (Rish, 2001). Clinical data such as kidney function 

markers and lifestyle variables are often correlated; for example, serum creatinine and 

glomerular filtration rate (GFR) are strongly interdependent. Violating the independence 

assumption leads to misclassifications, particularly in distinguishing patients without chronic 



kidney disease (CKD). By contrast, Logistic Regression performed well because it models 

linear relationships effectively and maintained high sensitivity to CKD-positive cases, aligning 

with findings by Jurkovic et al. (2021), who reported that regression-based models are strong 

baselines in clinical classification tasks. 

SVM demonstrated strong performance for the majority class, but its recall for minority cases 

(healthy individuals) was lower compared with ensemble methods. This weakness arises 

because SVM optimises for a maximum-margin boundary, which can be skewed when faced 

with imbalanced datasets (Cortes and Vapnik, 1995). Although techniques such as class 

weighting and kernel optimisation could mitigate this, the results here suggest that SVM is less 

suited for highly imbalanced CKD datasets relative to boosting algorithms. 

Random Forest achieved a near-perfect accuracy of 99% and showed robustness in handling 

non-linearities and feature interactions, confirming previous evidence that bagging-based 

ensemble models are reliable for biomedical prediction (Breiman, 2001). Nevertheless, 

compared to XGBoost and LightGBM, its interpretability and efficiency were less pronounced. 

Both boosting models not only matched Random Forest in predictive power but also 

outperformed it in terms of balanced precision and recall across classes. These results are 

consistent with Chen and Guestrin (2016), who demonstrated that boosting frameworks excel 

in scenarios with complex interactions and moderate data imbalance. 

The strength of XGBoost and LightGBM lies in their ability to sequentially reduce residual 

errors, leading to fine-grained optimisation. Furthermore, their compatibility with 

interpretability frameworks such as SHAP provides transparency. As the SHAP analysis 

revealed, medically validated indicators such as GFR, C3-C4 complement proteins, blood 

pressure, and blood urea nitrogen (BUN) were consistently ranked as the most influential 

features. This reinforces clinical trust in the models, as these variables are well-established risk 

factors for CKD progression (Levey et al., 2003). The ability to combine superior predictive 

accuracy with clinically meaningful interpretability makes boosting methods particularly 

advantageous in healthcare contexts. 

Overall, the comparative discussion demonstrates that while traditional models like Logistic 

Regression and SVM offer strong baselines, ensemble and boosting techniques deliver state-

of-the-art performance. In particular, XGBoost and LightGBM achieve a balance between 

predictive reliability, feature interpretability, and clinical plausibility, making them the most 

suitable candidates for integration into clinical decision-support systems. 



5.4 Implications for Clinical Decision-Making 

The findings of this study have important implications for the clinical management of Chronic 

Kidney Disease (CKD). Early detection and precise risk stratification are critical, as CKD often 

progresses silently until advanced stages, where treatment options are limited and costly (Levey 

et al., 2003). By demonstrating that advanced machine learning models such as XGBoost and 

LightGBM can achieve near-perfect accuracy while maintaining interpretability, this research 

highlights a viable pathway for integrating artificial intelligence (AI)-based decision-support 

systems into routine nephrology practice. 

Firstly, the consistent identification of glomerular filtration rate (GFR), C3-C4 complement 

proteins, blood pressure, and blood urea nitrogen (BUN) as top predictors confirms their 

clinical relevance as diagnostic markers. Nephrologists already rely on these parameters for 

assessing kidney function, and their prominence in SHAP explanations enhances the model’s 

credibility. This alignment between algorithmic insights and established medical practice 

addresses a common barrier to AI adoption in healthcare—namely, the trust deficit caused by 

“black-box” models (Amann et al., 2020). With interpretable outputs, clinicians can better 

justify decisions to patients, reinforcing shared decision-making. 

Secondly, the superior performance of boosting models over traditional approaches provides a 

practical advantage in settings with resource limitations. For example, Logistic Regression and 

SVM may provide reasonable baselines, but their reduced recall for minority classes increases 

the risk of false negatives, i.e., failing to identify patients with CKD. In contrast, XGBoost and 

LightGBM minimize this risk, ensuring that fewer at-risk individuals are overlooked. In 

clinical practice, this translates into earlier referrals for diagnostic imaging, specialist 

consultations, or lifestyle interventions, potentially slowing disease progression and reducing 

the burden on dialysis services. 

Moreover, machine learning systems informed by SHAP analysis can facilitate personalised 

medicine. For instance, patients with high SHAP contributions from modifiable factors such as 

blood pressure, diet, smoking, or physical activity may be prioritised for behavioural 

counselling and targeted interventions. In contrast, those with dominant contributions from 

genetic or biochemical markers (e.g., family history, C3-C4 levels) may require closer clinical 

monitoring and laboratory testing. By distinguishing between modifiable and non-modifiable 

risks, the model allows tailored patient management strategies, consistent with modern 

precision medicine principles (Collins and Varmus, 2015). 



Another implication lies in enhancing patient education. Visual outputs of SHAP, such as bar 

plots and waterfall charts, can be integrated into electronic health records to provide intuitive 

feedback for patients. Studies have shown that patients are more likely to adhere to treatment 

when explanations are transparent and personalised (Shortliffe and Sepúlveda, 2018). For 

example, a patient shown that their rising blood pressure and reduced GFR are contributing 

most strongly to disease risk may be more motivated to comply with antihypertensive treatment 

and lifestyle recommendations. 

From a systems perspective, integrating such predictive models into hospital workflows could 

improve resource allocation. High-risk patients identified at primary care level could be 

referred earlier to nephrology specialists, reducing emergency admissions for end-stage renal 

failure. Furthermore, health policymakers could utilise aggregated predictive insights to 

anticipate regional CKD prevalence trends, enabling better planning for dialysis units and 

transplant programmes. 

However, the deployment of such tools requires careful attention to ethical, legal, and social 

dimensions. Issues such as data privacy, algorithmic bias, and clinician accountability must be 

addressed before large-scale implementation (Wiens et al., 2019). For example, training 

datasets must be representative of diverse patient populations to avoid systematic under-

diagnosis in minority groups. Additionally, clinicians must retain ultimate responsibility for 

treatment decisions, with AI serving as an assistive rather than a replacement mechanism. 

In conclusion, the study demonstrates that machine learning models—particularly XGBoost 

and LightGBM—can play a transformative role in CKD management. Their ability to combine 

predictive accuracy with interpretability offers a foundation for clinical decision-support 

systems that are both trustworthy and actionable. With appropriate integration into healthcare 

infrastructure, these models could enable earlier intervention, more efficient resource use, and 

ultimately improved patient outcomes in CKD care. 

 

 

 

 

 



Chapter 6 – Conclusion and Future Work 
 

6.1 Conclusion 

This research set out to explore the potential of machine learning in predicting Chronic Kidney 

Disease (CKD), a condition that continues to impose a substantial burden on healthcare systems 

worldwide due to its silent progression and often late-stage detection (Levey et al., 2003). By 

leveraging multiple classification algorithms—Naïve Bayes, Logistic Regression, Support 

Vector Machine (SVM), Random Forest, XGBoost, and LightGBM—the study provided a 

comparative analysis of predictive performance and interpretability to identify the most 

effective models for early CKD detection. 

The results showed that ensemble-based models, particularly XGBoost and LightGBM, 

achieved superior predictive accuracy of 99%, alongside consistently high precision and recall 

across both majority and minority classes. These outcomes highlight their robustness in 

capturing complex relationships between clinical and biochemical parameters. Logistic 

Regression and Random Forest also performed competitively, whereas Naïve Bayes 

underperformed, reflecting its limitations in handling correlated variables and class imbalance. 

SVM, although accurate, showed reduced sensitivity in detecting minority class instances, 

which in healthcare contexts could lead to missed diagnoses. 

A key strength of this study was its emphasis on explainability. Using SHAP (SHapley Additive 

exPlanations), the project demonstrated how critical attributes—such as glomerular filtration 

rate (GFR), blood pressure, blood urea nitrogen, and serum creatinine—were central to 

classification. This alignment with established clinical knowledge (Jha et al., 2013) enhances 

model trustworthiness and ensures that predictions are not only statistically valid but also 

clinically meaningful. By offering transparent explanations, the models can support physicians 

in decision-making and provide patients with a clearer understanding of their health status. 

Beyond technical performance, the study also underscores the potential of AI-driven systems 

to transform clinical workflows and patient care. Machine learning models could be integrated 

into electronic health records to generate real-time risk alerts, enabling earlier referrals, tailored 

interventions, and more efficient resource allocation. Such systems could be particularly 

valuable in resource-constrained healthcare environments where specialist nephrology services 

are limited (Webster et al., 2017). 



In conclusion, this dissertation demonstrates that combining high-performing ensemble 

methods with interpretability tools creates a viable pathway for applying AI in CKD prediction. 

The findings reaffirm that predictive accuracy alone is insufficient in clinical contexts; 

transparency and reliability are equally crucial for acceptance and adoption. With further 

validation on larger and more diverse datasets, and careful attention to ethical and legal 

considerations, the models developed in this study hold the potential to make a meaningful 

contribution to early CKD detection and long-term patient outcomes. 

6.2 Future Work 

While this study demonstrates the effectiveness of machine learning models in predicting 

Chronic Kidney Disease (CKD), there remain several avenues for future research and 

development to enhance the robustness, applicability, and clinical impact of such systems. 

Inclusion of Longitudinal and Lifestyle Data The current dataset primarily focused on 

clinical and biochemical indicators measured at a single point in time. However, CKD is a 

progressive disease, and predictive performance can be improved by incorporating longitudinal 

data such as repeated laboratory values and kidney function trajectories (Tangri et al., 2016). 

Lifestyle factors—such as diet, smoking, alcohol use, and physical activity—also play an 

important role in CKD onset and progression, and their inclusion can provide a more holistic 

assessment of patient risk (Chen et al., 2019). Future studies should therefore move towards 

combining both medical and behavioural data sources for richer predictive modelling. 

Integration with Electronic Health Records (EHRs) A promising direction is the integration 

of machine learning models within Electronic Health Records (EHRs). Embedding prediction 

algorithms directly into EHR platforms would allow for real-time alerts and decision support 

during patient consultations (Shickel et al., 2018). Such integration would also facilitate 

population-level screening and enable proactive interventions, ultimately reducing the burden 

of late-stage diagnosis. However, challenges remain regarding interoperability and data 

privacy, which must be carefully addressed (Razzak et al., 2019). 

Explainability Enhancements Although SHAP values were employed in this study to improve 

interpretability, further explainability research is needed. Hybrid interpretability frameworks—

combining SHAP with counterfactual explanations and clinician-friendly visualisations—

could further enhance trust (Lundberg et al., 2020). Increasing transparency ensures that 

healthcare providers understand not only the predictions but also the rationale behind them, 

which is essential for supporting shared decision-making (Holzinger et al., 2019). 



Ethical and Legal Considerations Machine learning in healthcare raises complex ethical and 

legal concerns. Bias in training data can result in inequitable outcomes for vulnerable 

populations (Char et al., 2018). Furthermore, issues of accountability and liability must be 

addressed, particularly when automated systems influence diagnostic or treatment pathways 

(Morley et al., 2020). Future research must therefore investigate robust governance and 

regulatory frameworks that ensure fairness, accountability, and transparency in AI-driven 

healthcare systems. 

Clinical Trials and Real-World Validation Although retrospective datasets provide a 

foundation for algorithm development, prospective clinical trials are essential to validate real-

world effectiveness. Randomised trials and deployment studies can evaluate not only 

diagnostic accuracy but also patient outcomes and healthcare efficiency (Topol, 2019). External 

validation across diverse populations is also necessary to confirm generalisability, ensuring that 

models remain effective across healthcare systems and demographic groups (Wiens et al., 

2019). 

In summary, future work should move beyond retrospective data analysis towards the 

development of dynamic, transparent, and ethically sound prediction systems. By integrating 

longitudinal and lifestyle data, embedding models into EHRs, enhancing interpretability, 

addressing ethical-legal challenges, and validating performance through clinical trials, machine 

learning can evolve from a research tool to a clinically transformative framework for CKD 

prediction. 
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