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Abstract

Chronic Kidney Disease (CKD) is a progressive condition that poses a major global health
burden due to its asymptomatic onset and association with increased morbidity and mortality.
Early detection and risk stratification are essential for effective intervention, yet traditional
diagnostic approaches often fail to capture complex patterns within heterogeneous clinical data.
This study develops and evaluates machine learning models for CKD prediction, with a focus
on enhancing interpretability to support clinical decision-making. Using the Kaggle dataset,
data preprocessing techniques including normalization and missing value imputation were
applied, followed by training models such as Logistic Regression, Random Forest, Support
Vector Machine, and XGBoost. Model performance was assessed using accuracy, precision,
recall, F1-score, and AUC-ROC. The results demonstrate that ensemble methods, particularly
Random Forest and XGBoost, achieved superior predictive accuracy. To address the “black-
box” challenge of machine learning, SHAP (Shapley Additive Explanations) values were
employed to provide both local and global interpretability, revealing clinically meaningful risk
factors such as serum creatinine and blood pressure. The findings highlight the potential of
interpretable AI models to improve CKD diagnosis, patient monitoring, and personalized

treatment strategies.

Keywords: Chronic Kidney Disease (CKD); Machine Learning; Predictive Modelling;
Random Forest; XGBoost; Logistic Regression; Support Vector Machine (SVM); Explainable
Al (XAI); SHAP; Clinical Decision Support; Interpretability




Chapter 1- Introduction

1.1 Background and Context
Chronic Kidney Disease (CKD) represents a long-term and progressive medical condition in

which the kidneys gradually lose their ability to function effectively. Clinically, CKD is defined
by structural or functional abnormalities in the kidneys that persist for more than three months,
typically evidenced through reduced glomerular filtration rate (GFR), raised serum creatinine
levels, and the presence of protein in the urine (Levey et al., 2005). Unlike acute kidney
injuries, CKD often progresses silently in its early stages, with noticeable symptoms emerging
only when the disease reaches advanced levels. This “silent” progression makes it one of the

most significant threats to global health.

The global burden of CKD is profound. The Global Burden of Disease Study reported that
CKD now affects around 10% of the adult population worldwide, and its prevalence is rising
largely due to the growing incidence of diabetes, hypertension, and ageing populations (GBD
Chronic Kidney Disease Collaboration, 2020). The World Health Organization (2020) ranked
CKD among the top twenty leading causes of death globally, attributing over one million deaths
annually to the disease. In addition to mortality, the impact on patients’ quality of life is
substantial, as end-stage renal disease (ESRD) often requires long-term dialysis or kidney
transplantation, both of which are resource-intensive and financially burdensome (Luyckx et

al., 2018).

The importance of early detection cannot be overstated. Timely intervention at the early stages
of CKD has been shown to slow progression, reduce complications, and improve patient
outcomes. Preventive measures such as lifestyle modification, strict control of blood pressure
and diabetes, and use of nephroprotective medications are far more effective when initiated
early (Ene-lordache et al., 2016). However, the challenge lies in the fact that the symptoms of
CKD, such as tiredness, loss of appetite, or swelling, are nonspecific and can easily be
attributed to other conditions. Consequently, patients are frequently diagnosed only when the

disease has progressed to irreversible stages. This delay in detection underlines the urgent need




for predictive and preventative approaches in healthcare that can identify high-risk patients

before severe damage occurs.

1.2 Problem Definition

The current reliance on conventional clinical measures, such as serum creatinine tests,
estimated GFR, and urinalysis, poses limitations in the early detection of CKD. Although these
measures are standard in medical practice, they are not always sensitive enough to pick up
early-stage disease (Mills et al., 2015). In many instances, CKD is detected during routine
testing for other conditions, meaning that opportunities for earlier intervention are often

missed.
Three core challenges stand out in the diagnosis and management of CKD:

1. Late diagnosis — Many patients are diagnosed only at advanced stages of CKD, by

which point treatment options are limited and costly (Couser et al., 2011).

2. Risk of misclassification — False negatives, where patients with CKD are not
identified, may result in missed treatment opportunities. Conversely, false positives,
where healthy individuals are incorrectly labelled as diseased, can lead to unnecessary

stress, further testing, and resource wastage.

3. Rising comorbidities — The increase in diabetes, hypertension, and obesity complicates
both diagnosis and treatment, as these conditions can mask or accelerate kidney decline

(Foreman et al., 2018).

These limitations illustrate the need for innovative, data-driven methods that go beyond manual
interpretation of clinical test results. Machine learning (ML) has emerged as a promising tool
in this regard, as it can analyse complex datasets to reveal patterns and predict disease outcomes
with high accuracy. The application of ML to CKD prediction provides a valuable opportunity
to identify at-risk patients at an earlier stage and to assist clinicians in making timely, evidence-

based decisions (Shickel et al., 2018).

1.3 Role of Machine Learning in Healthcare
The integration of machine learning (ML) into healthcare has become one of the most

transformative developments in modern medicine. With the increasing availability of electronic
health records, clinical laboratory data, and medical imaging, large volumes of patient

information can now be analysed using computational techniques that go beyond the




capabilities of traditional statistics (Miotto et al., 2018). Unlike conventional approaches,
which often rely on linear assumptions and limited variables, ML algorithms are able to detect
subtle and complex patterns within high-dimensional data, enabling more accurate predictions

of disease risk and progression (Kourou et al., 2015).

In practice, ML has already demonstrated success across various medical domains. For
example, deep learning models have been used to classify skin cancer from images at a level
comparable to dermatologists (Esteva et al., 2019), while predictive algorithms for sepsis and
heart disease have outperformed traditional clinical scoring systems (Rajkomar et al., 2019).
These applications illustrate the potential of ML to act as a decision-support tool, offering
earlier detection of diseases, better patient stratification, and improved allocation of healthcare

resources.

The case of Chronic Kidney Disease (CKD) is particularly suitable for ML approaches. CKD
risk is influenced by a combination of biochemical measures (such as serum creatinine,
haemoglobin, and albumin), demographic factors, and comorbidities including diabetes and
hypertension. Traditional diagnostic methods may struggle to integrate these heterogeneous
data points simultaneously, whereas ML algorithms can handle both categorical and continuous
features to deliver more reliable predictions (Huang et al., 2020). By applying ML, patterns
that are not easily visible to clinicians can be identified, allowing high-risk patients to be

flagged earlier in the disease trajectory.

However, in the healthcare domain, predictive accuracy on its own is not enough. Clinical
decision-making requires not only correct outcomes but also transparent reasoning. The
widespread use of “black-box” models such as deep neural networks raises concerns among
healthcare professionals, as the rationale behind predictions is often unclear (Caruana et al.,
2015). This lack of interpretability can hinder clinical trust and regulatory approval,
particularly when the stakes involve patient lives. To address this challenge, explainable
artificial intelligence (XAI) techniques such as SHAP (SHapley Additive Explanations. These
approaches provide both global insights into which features are most influential overall and
local explanations for individual predictions, making the results more interpretable for

clinicians (Lundberg and Lee, 2017; Ribeiro et al., 2016).

Thus, the role of ML in healthcare extends beyond predictive capability. It encompasses the
need for systems that are interpretable, ethically responsible, and clinically usable. For CKD

prediction, ML not only offers the possibility of earlier and more accurate detection but also




provides tools to ensure that clinicians understand and trust the basis of each prediction. This
balance between accuracy and interpretability is essential for the adoption of ML-driven

systems in real-world healthcare practice.

1.4 Aim and Objectives
The aim of this research is to design and evaluate an interpretable machine learning framework

for the early prediction of Chronic Kidney Disease (CKD) using clinical datasets. The study
intends to move beyond traditional diagnostic methods by applying advanced computational
techniques that are capable of identifying subtle patterns within patient data, while ensuring
that the predictive outputs are interpretable and clinically meaningful. This dual focus on
accuracy and transparency reflects the growing consensus in healthcare that artificial
intelligence systems must not only perform well but also provide clear justifications for their

predictions (Caruana et al., 2015; Ribeiro et al., 2016).
To achieve this aim, the project sets out the following objectives:

1. Dataset preparation — To obtain a publicly available CKD dataset and perform
rigorous preprocessing, including the handling of missing values, detection of
inconsistencies, and preparation of the data for modelling. Effective preprocessing is
fundamental, as poor data quality is one of the leading causes of unreliable machine

learning outcomes in healthcare (Kourou et al., 2015).

2. Feature representation — To apply appropriate encoding and scaling methods for
categorical and numerical variables, thereby ensuring comparability across features.
Proper feature engineering enhances model learning capacity and reduces bias in

predictive outcomes (Shickel et al., 2018).

3. Model development — To implement and train a diverse set of classification algorithms,
including Logistic Regression, Support Vector Machine (SVM), Random Forest, Naive
Bayes, LightGBM, and XGBoost. These models were selected to represent both simple
interpretable methods and more advanced ensemble-based approaches, allowing a
balanced evaluation of performance and practicality in clinical settings (Huang et al.,

2020).

4. Model evaluation and comparison — To evaluate model performance using a suite of
healthcare-relevant metrics, namely accuracy, precision, recall, F1-score, and the Area

Under the Receiver Operating Characteristic Curve (ROC-AUC). The use of multiple




metrics ensures that the models are assessed not only for overall correctness but also
for their ability to minimise false negatives and false positives, both of which carry

significant clinical consequences (Rajkomar et al., 2019).

5. Interpretability integration — To employ explainable artificial intelligence (XAI)
methods such as SHAP (SHapley Additive Explanations).These methods provide
insights into how specific features contribute to predictions, enabling clinicians to trust
and validate the outputs of machine learning systems (Lundberg and Lee, 2017; Ribeiro

etal., 2016).

6. Ethical consideration — To assess the ethical dimensions of developing predictive
models in healthcare, including fairness, potential bias, data security, and compliance
with privacy regulations such as the General Data Protection Regulation (GDPR).
Ethical evaluation ensures that predictive tools align with patient rights and healthcare

governance frameworks (Vayena et al., 2018).

Through these objectives, the project seeks to contribute both academically and clinically.
Academically, it benchmarks multiple machine learning techniques for CKD prediction and
demonstrates the role of explainability in enhancing trust in predictive models. Clinically, it
provides a framework that could support practitioners in making timely and evidence-based
decisions for patients at risk of CKD, ultimately aiming to improve health outcomes and reduce

the long-term burden of the disease.

1.5 Scope and Significance of the Study
The scope of this project is defined by its focus on the development of a predictive framework

for early detection of Chronic Kidney Disease (CKD) using machine learning techniques. The
study makes use of a publicly available CKD dataset consisting of both numerical and
categorical clinical features, such as blood pressure, serum creatinine, haemoglobin levels, and
patient history of comorbidities. The models selected—Logistic Regression, Support Vector
Machine (SVM), Random Forest, Naive Bayes, LightGBM, and XGBoost—represent a
balance between traditional interpretable classifiers and more advanced ensemble methods.
The inclusion of multiple models ensures that the study does not rely on a single approach but
provides a comparative analysis that highlights both strengths and limitations of different

algorithms in a healthcare setting (Kourou et al., 2015; Huang et al., 2020).

The significance of this work lies in its dual emphasis on accuracy and interpretability. While

predictive performance is crucial, clinical adoption depends heavily on whether healthcare




professionals can understand and trust the system’s outputs. By integrating explainable
artificial intelligence (XAI) methods such as SHAP and LIME, the project contributes to
bridging the gap between complex models and clinical usability, allowing physicians to gain
insights into how and why predictions are made (Ribeiro et al., 2016; Lundberg and Lee, 2017).
Furthermore, by embedding ethical considerations such as fairness, bias reduction, and
compliance with the General Data Protection Regulation (GDPR), the study ensures that its
contributions are not only technical but also aligned with the responsibilities of modern

healthcare systems (Vayena et al., 2018).

Ultimately, the project’s significance extends beyond academic experimentation. It
demonstrates how machine learning can be translated into clinically meaningful tools for early
CKD prediction. This has the potential to support timely interventions, improve patient
outcomes, and reduce the economic burden of advanced-stage CKD, thereby making a direct
contribution to both healthcare practice and broader public health objectives (GBD Chronic
Kidney Disease Collaboration, 2020).

1.5 Research Questions
Formulating clear research questions is essential for aligning the objectives of a study with the

methodology and expected outcomes. In this project, the research questions are designed to
address both the technical and practical aspects of applying machine learning (ML) to the early
prediction of Chronic Kidney Disease (CKD). They not only reflect the computational
challenges of developing predictive models but also consider the clinical, ethical, and
interpretability requirements that influence whether such models can be realistically adopted

in healthcare practice.

Research Question 1: How effective are different machine learning algorithms, such as
Logistic Regression, Support Vector Machine, Random Forest, Naive Bayes, Light GBM,
and XGBoost, in predicting early-stage CKD from clinical data?
The first research question aims to evaluate the comparative effectiveness of different ML
classifiers. Logistic Regression and Support Vector Machine (SVM) have been widely used in
medical prediction tasks because of their interpretability and ability to handle binary outcomes
(Kourou et al., 2015). Ensemble methods such as Random Forest, LightGBM, and XGBoost
are more advanced techniques capable of modelling non-linear relationships and interactions
between clinical features (Huang et al., 2020). Naive Bayes, while simplistic, is often used as
a baseline in healthcare studies due to its speed and ease of implementation (Rajkomar et al.,

2019). This question ensures that the study not only benchmarks multiple models but also




identifies which algorithm balances accuracy, generalisability, and clinical usability most

effectively.

Research Question 2: What preprocessing techniques, including missing value
imputation, categorical encoding, and feature scaling, are most suitable for preparing
CKD datasets for predictive modelling?
Medical datasets frequently suffer from incompleteness, inconsistencies, and variations in data
entry. Missing values, in particular, are common in CKD records due to patients skipping tests
or incomplete reporting (Mills et al., 2015). This question explores whether techniques such as
K-Nearest Neighbour (KNN) imputation can provide realistic replacements for missing values,
preserving the relationships between features (Jerez et al., 2010). Similarly, encoding
categorical features such as hypertension status and red blood cell characteristics is critical to
ensure they are properly represented in ML models. Feature scaling, using approaches like
Min-Max Normalisation, is equally important for models sensitive to input magnitudes
(Shickel et al., 2018). Answering this question ensures that the dataset used for modelling is
not only clean but also optimised for learning, which directly influences the reliability of the

predictions.

Research Question 3: Which evaluation metrics provide the most reliable assessment of
predictive performance in the healthcare context, and how do different models compare
against them?
Accuracy alone cannot determine whether a model is useful in a healthcare setting. For
instance, in imbalanced datasets, a model may achieve high accuracy while failing to identify
positive cases, which could have dangerous clinical implications (Caruana et al., 2015). Hence,
this research question addresses the need to use metrics such as precision, recall, F1-score, and
ROC-AUC. Precision ensures the reduction of false positives, recall focuses on minimising
false negatives, F1-score balances the two, and ROC-AUC provides a threshold-independent
view of model discrimination (Rajkomar et al., 2019). By systematically comparing models
against these metrics, the study aims to provide a holistic view of their strengths and

weaknesses, ensuring that the selected model is both statistically robust and clinically safe.

Research Question 4: How can explainable artificial intelligence (XAI) methods such as
SHAP and LIME enhance the interpretability of machine learning models in CKD
prediction?

Interpretability is a fundamental barrier to the adoption of ML in healthcare. Clinicians often




hesitate to trust “black-box” models because they cannot see how predictions are derived
(Caruana et al., 2015). SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016) are
two widely used XAI methods that provide explanations at both the global and local levels,
showing which features influence overall predictions and individual patient outcomes. This
research question ensures that the study does not only focus on achieving high performance
but also addresses transparency and trustworthiness. By integrating XAI, the project

contributes to making ML tools more practical in real-world clinical decision-making.

Research Question 5: What ethical and practical considerations, including fairness,
privacy, and regulatory compliance, need to be addressed to ensure that predictive models
for CKD are trustworthy and clinically applicable?
Machine learning in medicine must be developed within an ethical and regulatory framework
to avoid potential harm. Issues such as data bias, inequality in predictions across patient groups,
and compliance with data protection regulations like the General Data Protection Regulation
(GDPR) are critical (Vayena et al., 2018). For example, if a model disproportionately
misclassifies patients based on age or gender, it may reinforce health disparities. This research
question ensures that the study not only addresses technical feasibility but also acknowledges

broader responsibilities, aligning predictive modelling with ethical standards and patient rights.

Together, these research questions create a structured pathway for the dissertation. They
establish the technical scope by focusing on preprocessing, model selection, and evaluation,
while also highlighting interpretability and ethics as crucial dimensions. Answering them will
allow the project to contribute meaningfully to both academic research in machine learning and

its practical application in the healthcare domain, particularly for the early detection of CKD.

1.6 Structure of the Dissertation
The dissertation is organised into the following chapters:

o Chapter 1 — Introduction: Provides the background of the study, defines the research
problem, outlines the aim and objectives, and explains the significance and scope of the

work.

o Chapter 2 — Literature Review: Reviews existing work on Chronic Kidney Disease
prediction, machine learning in healthcare, and the role of interpretability methods such

as SHAP and LIME.




Chapter 3 — System Design: Presents the overall design of the proposed system,
including architectural diagrams, workflow representations, and the approaches

followed to integrate preprocessing, model training, and interpretability.

Chapter 4 — Methodology: Describes the dataset, preprocessing pipeline, selected

machine learning algorithms, evaluation framework, and ethical considerations.

Chapter 5 — Implementation and Results: Provides coding evidence with
screenshots, details model training and testing, compares classifiers using evaluation

metrics, and presents interpretability results.

Chapter 6 — Discussion: Interprets and analyses the findings in relation to existing

literature, highlighting strengths, limitations, and clinical significance.

Chapter 7 — Conclusion and Future Work: Summarises the contributions of the
project, reflects on achievements, and outlines opportunities for future research and

development.

References and Appendices: Contain the full list of references in Harvard style and

supplementary material, including extended tables, figures, and code excerpts.




Chapter 2: Literature Review

2.1 Introduction to the Literature Review
A literature review serves as the foundation for any research project, providing a critical

understanding of what has already been achieved and where knowledge gaps persist. In this
study, the review has two primary purposes: first, to explore how Chronic Kidney Disease
(CKD) has been approached within existing clinical and computational research; and second,
to establish how machine learning (ML) techniques can be applied, evaluated, and improved

for the prediction of CKD.

The review begins with the clinical context of CKD, outlining its prevalence, major risk factors,
and the challenges that arise in early detection and management. From there, attention shifts to
the role of ML in healthcare more broadly, before narrowing to focus on how these approaches
have been specifically applied in CKD prediction. By distinguishing between primary
research—original studies that present empirical findings on predictive models—and
secondary research, such as systematic reviews and meta-analyses that evaluate multiple
approaches collectively, the review builds a balanced perspective (Kitchenham and Charters,
2007). This distinction is important, as it allows the project to draw not only on individual case

evidence but also on broader patterns in the literature.

A further strand of the review concerns the techniques and methodologies used in existing
systems. This includes the handling of missing data, feature selection strategies, the choice of
classification algorithms, and the metrics applied for performance evaluation. In reviewing
these works, it becomes clear that many existing systems have prioritised predictive accuracy
while paying less attention to interpretability and ethical considerations—two dimensions that

are critical in healthcare settings (Rajkomar et al., 2019; Shickel et al., 2018).

The chapter therefore plays a dual role: it situates the present study within the existing body of
work, and it highlights the shortcomings that justify the development of a new framework. In
particular, the review identifies the need for approaches that combine reliable performance with

transparency and fairness. This project responds to that gap by proposing a comparative




analysis of multiple machine learning models, supported by robust preprocessing methods and
enhanced by explainable artificial intelligence (XAI) tools such as SHAP and LIME. In this
way, the study not only builds on existing research but also aims to make a practical
contribution to the development of interpretable, ethically grounded predictive systems for

CKD.

2.2 Background on Chronic Kidney Disease (CKD)
Chronic Kidney Disease (CKD) is a progressive and long-term condition in which the kidneys

gradually lose their ability to filter waste and maintain essential bodily functions. It is clinically
defined as abnormalities of kidney structure or function lasting more than three months,
commonly measured through reduced glomerular filtration rate (GFR), elevated serum
creatinine levels, and the presence of albumin in urine (Levey et al., 2005). CKD is often
referred to as a “silent disease” because its early stages present few noticeable symptoms.
Patients may feel well until the kidneys are already severely impaired, at which point treatment

options become limited and costly (Jha et al., 2013).

The global impact of CKD is striking. The Global Burden of Disease (GBD) Study estimated
that almost 700 million people were living with CKD in 2017, making it one of the most
prevalent non-communicable diseases worldwide (GBD Chronic Kidney Disease
Collaboration, 2020). Mortality linked to CKD has increased significantly in the last two
decades, and the World Health Organization (2020) now lists it among the leading causes of
death globally. Importantly, CKD rarely exists in isolation. Patients with CKD are at a
heightened risk of cardiovascular events, with cardiovascular mortality often exceeding deaths
directly attributable to kidney failure (Tonelli et al., 2016). This dual burden reinforces the need

for earlier detection and management strategies.

From an economic perspective, CKD places a heavy strain on healthcare systems. Patients who
progress to end-stage renal disease (ESRD) require dialysis or kidney transplantation, both of
which are resource-intensive. In high-income countries such as the United States and the
United Kingdom, dialysis alone costs healthcare systems tens of thousands of dollars per
patient annually. By contrast, in many low- and middle-income countries, access to dialysis is
scarce, meaning many patients do not survive once they reach ESRD (Couser et al., 2011;
Luyckx et al., 2018). Consequently, there is an urgent emphasis on preventing CKD

progression through effective early interventions.




The causes of CKD are closely linked to other major global health challenges. Diabetes mellitus
and hypertension are the two leading drivers, jointly responsible for the majority of CKD cases
worldwide (Foreman et al., 2018). Other contributors include obesity, smoking, cardiovascular
disease, genetic predisposition, and environmental exposures. Beyond biological factors, social
determinants such as poverty, limited healthcare access, and lack of awareness also play a
critical role in disease prevalence and progression, particularly in resource-limited regions

(Ene-lordache et al., 2016).

Despite its scale, CKD remains difficult to diagnose in the early stages. Current diagnostic
tools, including serum creatinine measurement, GFR estimation, and urine protein tests, are
effective in detecting moderate to advanced disease but lack sensitivity for identifying early
kidney damage (Mills et al., 2015). Furthermore, these tests require repeated laboratory access,
which is not always feasible in under-resourced areas. This diagnostic gap contributes to late
identification, at which point treatment options are less effective, and patients are at higher risk

of poor outcomes.

This situation highlights the pressing need for approaches that go beyond conventional clinical
testing. Predictive models using computational techniques can help identify high-risk
individuals before severe kidney damage occurs. Machine learning, in particular, has the
capacity to integrate diverse clinical features—ranging from laboratory values to demographic
data—into models that predict disease risk more accurately than traditional methods (Huang et
al., 2020). By enabling earlier detection, such systems can support clinicians in initiating
preventive strategies, reducing the likelihood of disease progression, and ultimately lessening

both the human and economic costs of CKD.

2.3 Existing Systems for CKD Prediction
Over the last decade, researchers have increasingly explored the use of machine learning (ML)

to support the early prediction of Chronic Kidney Disease (CKD). A range of models has been
applied, from traditional classifiers to modern ensemble methods and neural networks, each
showing varying levels of effectiveness. Reviewing these systems is important not only to

recognise their achievements but also to identify the limitations that motivate the present study.

Traditional classifiers such as Logistic Regression and Support Vector Machine (SVM) have
been widely adopted in early CKD studies. Logistic Regression is often chosen for its
interpretability and suitability for binary classification. For example, Aljaaf et al. (2018)
reported that Logistic Regression achieved over 95% accuracy in predicting CKD when applied




to clinical datasets with carefully selected features. Similarly, SVM has been highlighted for
its ability to manage high-dimensional data and create robust separation between CKD and
non-CKD groups (Kavitha and Kannan, 2016). However, while these models produce reliable
predictions, their ability to capture non-linear interactions between clinical variables is limited,

restricting performance when data complexity increases.

To overcome such limitations, ensemble methods have gained prominence. Random Forest has
been one of the most commonly applied ensemble models in CKD prediction. Studies such as
Ghosh et al. (2019) demonstrated that Random Forest consistently outperformed Logistic
Regression and SVM, achieving accuracies close to 99% while also providing feature
importance measures that highlight clinically relevant indicators such as serum creatinine and
haemoglobin. More recently, gradient boosting frameworks like XGBoost and LightGBM have
been applied, with findings showing that these methods often exceed the performance of
Random Forest. In their review, Huang et al. (2020) noted that boosting algorithms are
particularly effective at handling missing data and producing stable results across different

healthcare datasets, making them highly suitable for CKD applications.

Artificial Neural Networks (ANNs) have also been tested for CKD prediction, motivated by
their ability to model complex, non-linear patterns. Parmar et al. (2018) applied a multilayer
perceptron to the Kaggle dataset and reported high accuracy levels comparable to ensemble
methods. Despite this, ANNs are often criticised for their “black-box™ nature, as they do not
provide clinicians with clear explanations of how predictions are made (Caruana et al., 2015).
This lack of interpretability has slowed their clinical adoption despite their strong predictive

capacity.

Beyond individual case studies, several secondary research works have attempted to synthesise
findings across multiple models. Agarwal et al. (2021), in a systematic review, concluded that
while most ML models for CKD prediction achieve high reported accuracies (often above
95%), the majority are trained on small datasets, usually the Kaggle dataset of 4000 records,
which raises concerns about generalisability. Kourou et al. (2015), in a broader review of ML
in disease prediction, also noted that although algorithms show strong performance, issues such
as small sample sizes, class imbalance, and lack of external validation continue to limit their

reliability in real-world clinical practice.

One consistent weakness across many existing systems is their focus on accuracy at the expense

of interpretability. While Random Forest and boosting algorithms provide variable importance




rankings, these are often insufficient to meet the transparency demands of clinical practice.
Few studies have actively incorporated explainable artificial intelligence (XAI) techniques
such as SHAP or LIME to provide both global and local explanations of model predictions
(Ribeiro et al., 2016; Lundberg and Lee, 2017). This is a critical gap, as the medical community
requires not only accurate tools but also systems that can justify their outputs in a way that is

understandable to clinicians and patients alike.

In summary, the literature demonstrates that CKD prediction using ML is feasible and has
produced high reported accuracies across a range of models. However, three key limitations
persist: reliance on small and homogeneous datasets, overemphasis on accuracy without
interpretability, and limited attention to ethical or clinical adoption issues. These shortcomings
provide the basis for the present project, which seeks to advance the field by implementing a
comparative evaluation of multiple models—including Logistic Regression, SVM, Random
Forest, Naive Bayes, LightGBM, and XGBoost—while integrating SHAP for interpretability
and embedding ethical considerations. By addressing these gaps, the proposed framework aims

to offer a more balanced and clinically relevant approach than many existing systems.

2.4 Proposed and Justified Approach
Building on the review of existing systems, this project proposes an approach that addresses

their limitations while offering a framework that is accurate, transparent, and clinically
meaningful. Many earlier studies have shown that machine learning (ML) can achieve strong
predictive performance in CKD detection, but they often relied on small datasets, weak
preprocessing pipelines, or placed disproportionate emphasis on accuracy without considering
interpretability or ethical concerns (Agarwal et al., 2021; Kourou et al., 2015). The design of
this project directly responds to those gaps by integrating rigorous preprocessing, a
comparative evaluation of multiple models, explainable artificial intelligence (XAI), and

explicit attention to fairness and privacy.

The first strength of this approach lies in its data preprocessing pipeline. Clinical datasets often
suffer from incomplete and inconsistent values, yet many studies simply remove missing
records or replace them with averages, which can distort clinical patterns. In this project,
missing values are addressed using K-Nearest Neighbour (KNN) imputation, a method that
preserves the natural relationships between patients by filling gaps based on similarity (Jerez
et al., 2010). Alongside this, categorical variables such as hypertension status are carefully

encoded, and numerical attributes are normalised using Min-Max scaling to ensure




comparability across features. This level of preprocessing ensures that the models are trained

on a more accurate and reliable dataset, strengthening the foundation for prediction.

At the modelling stage, the project deliberately adopts a comparative strategy. Instead of
depending on a single algorithm, six classifiers are implemented: Logistic Regression, Support
Vector Machine (SVM), Random Forest, Naive Bayes, LightGBM, and XGBoost. Logistic
Regression is chosen for its interpretability, while SVM provides a strong benchmark for high-
dimensional classification tasks. Ensemble methods such as Random Forest, LightGBM, and
XGBoost have been shown to capture complex non-linear relationships in healthcare data and
often outperform traditional methods in predictive accuracy (Huang et al., 2020). Including
Naive Bayes ensures that even simpler models are benchmarked, offering a fairer comparison
across the spectrum of classifiers. This breadth of evaluation provides deeper insights into
which techniques are most effective for CKD prediction and ensures that the strongest model

is selected not on assumption, but on empirical evidence.

What sets this framework apart from many existing studies is its emphasis on interpretability.
In healthcare, clinicians are unlikely to adopt models that act as black boxes, regardless of their
accuracy (Caruana et al., 2015). To overcome this, the project integrates SHAP (SHapley
Additive Explanations). SHAP provides both global insights, by identifying which features
most influence outcomes across the dataset, and local explanations for individual patient cases.
This interpretability ensures that predictions are not only correct but also understandable,

building trust and enabling clinicians to act confidently on the results.

The evaluation framework is equally comprehensive. Instead of focusing solely on accuracy,
which can be misleading in healthcare, the project uses a suite of metrics: precision, recall, F1-
score, and ROC-AUC. Each provides a different perspective: precision reduces false positives,
recall reduces false negatives, F1-score balances the two, and ROC-AUC gives a threshold-
independent view of discriminatory power (Rajkomar et al., 2019). By combining these
metrics, the system ensures that its performance is assessed in a way that reflects the realities

of clinical decision-making.

Finally, the project incorporates ethical and practical considerations. Patient data must be
handled responsibly, with awareness of fairness, bias, and regulatory compliance such as
GDPR. Unlike many earlier studies that overlooked these issues, this framework acknowledges
them explicitly, ensuring that it aligns with both clinical expectations and broader societal

responsibilities (Vayena et al., 2018).




Taken together, these elements justify the proposed approach as an advancement over existing
systems. It strengthens data preprocessing, broadens model comparison, integrates
interpretability through XAI, and embeds ethical safeguards. This balance of technical
robustness, transparency, and responsibility positions the framework as a more reliable and
clinically relevant solution for CKD prediction, offering meaningful improvements over prior

approaches.

2.6 Techniques and Methodologies in CKD Prediction

Research on CKD prediction has employed a wide range of techniques across the stages of
preprocessing, feature selection, model development, and evaluation. A closer look at the
literature, including both primary studies and secondary reviews, highlights how

methodologies have evolved and where limitations persist.

Data Preprocessing Handling missing values is a consistent challenge in CKD datasets. Early
studies often relied on simple mean or mode imputation, but this approach risks distorting
medical relationships (Mills et al., 2015). More advanced techniques, such as K-Nearest
Neighbour (KNN) imputation, have been adopted in several primary studies and shown to
improve prediction reliability by using patient similarity to estimate missing entries (Jerez et
al., 2010). Ghosh et al. (2019) further demonstrated that the choice of imputation strategy
directly affects classification outcomes, reinforcing its importance. Secondary reviews, such as
Kourou et al. (2015), emphasise preprocessing as a critical determinant of model performance,
noting that inconsistent treatment of missing data contributes to wide variation in reported
results across studies. Encoding categorical features has also been carefully considered: Aljaaf
et al. (2018) highlight the effectiveness of one-hot encoding in avoiding ordinality bias, while
feature scaling methods like Min-Max Normalisation are widely used to ensure compatibility
with algorithms sensitive to magnitude differences, including SVMs and neural networks

(Shickel et al., 2018).

Feature Selection and Dimensionality Reduction Identifying the most relevant predictors
has been a focus of both primary and secondary research. In a study by Aljaaf et al. (2018),
LASSO regression was applied to CKD data, consistently identifying serum creatinine,
haemoglobin, and albumin as strong predictors. The Boruta algorithm has also been used to
validate feature relevance, with findings supporting the significance of biochemical indicators

such as blood urea and red blood cell counts (Kavitha et al., 2019). Secondary analyses by




Agarwal et al. (2021) confirm that feature selection improves both accuracy and
interpretability, reducing the risk of overfitting while highlighting clinically meaningful
variables. Although Principal Component Analysis (PCA) has been trialled for dimensionality
reduction (Miotto et al., 2018), it has been criticised for reducing interpretability, which is an

essential requirement in healthcare contexts.

Classification Models A wide spectrum of classifiers has been tested in CKD prediction.
Logistic Regression remains popular for its interpretability and strong performance in binary
outcomes (Aljaaf et al., 2018). SVM has been shown to achieve comparable accuracy while
excelling in high-dimensional classification (Kavitha and Kannan, 2016). Ensemble methods
dominate recent literature: Ghosh et al. (2019) reported that Random Forest achieved higher
accuracy than Logistic Regression and SVM while offering variable importance rankings.
Boosting algorithms such as XGBoost and LightGBM are increasingly used; Huang et al.
(2020) noted in a systematic review that they consistently outperform traditional models in
CKD prediction by handling non-linear interactions more effectively. Neural networks have
also been explored, with Parmar et al. (2018) achieving competitive results using a multilayer
perceptron. However, secondary reviews (Shickel et al., 2018) caution that small CKD datasets
limit the effectiveness of deep learning methods, which require larger sample sizes to generalise

well.

Evaluation Metrics Accuracy has long been the most reported metric, but researchers
increasingly stress that it is insufficient in healthcare settings. In a primary study, Ghosh et al.
(2019) showed that while Random Forest achieved high accuracy, its recall value was more
clinically meaningful in identifying patients with CKD. Precision and recall are now widely
reported, with recall particularly important to minimise false negatives. Agarwal et al. (2021)
highlight the F1-score as a balanced measure that is more informative than accuracy alone in
imbalanced datasets. ROC-AUC is also frequently used, with Rajkomar et al. (2019)
recommending it as a threshold-independent evaluation metric that provides a broader view of
discriminatory ability. Secondary surveys confirm that studies reporting multiple metrics
provide a more reliable assessment of clinical utility than those focused solely on accuracy

(Kourou et al., 2015).

Interpretability and Explainability While some models, such as Random Forest, provide
feature importance scores, these are often insufficient to build clinician confidence. Recent

years have seen the introduction of explainable artificial intelligence (XAI) methods into CKD




research. SHAP have been applied in a growing number of primary studies to provide case-
specific interpretability. Lundberg and Lee (2017) demonstrated SHAP’s ability to deliver
consistent global explanations, while Ribeiro et al. (2016) showed LIME’s effectiveness in
providing intuitive local approximations. Secondary works, such as Vayena et al. (2018), stress
that interpretability is no longer optional but essential for clinical adoption. Despite this,
Agarwal et al. (2021) note that only a minority of CKD prediction studies currently integrate

XAl indicating a major gap in the literature.

In summary, both primary and secondary research shows that methodologies for CKD
prediction have grown more sophisticated over time, evolving from simple imputation and
traditional classifiers to advanced ensemble models and explainability tools. Nevertheless,
significant challenges remain: small datasets, inconsistent preprocessing, and limited focus on
interpretability and ethics. These challenges reinforce the need for integrated approaches, such
as the one proposed in this project, which balances predictive accuracy with transparency and

responsible data use.

2.7 Interpretability and XAl in Healthcare
The application of machine learning in healthcare highlights a key tension between predictive

accuracy and interpretability. While advanced models such as ensemble learners and neural
networks achieve high accuracy, their “black box” nature limits clinical trust and
accountability. In conditions like CKD, where early detection is critical, clinicians must
understand not only whether a patient is at risk but also which variables influenced the decision

(Aljaaf et al., 2018; Rajkomar et al., 2019).

Explainable Al (XAI) techniques have been introduced to address this gap. SHAP (Lundberg
and Lee, 2017) assigns importance values to each feature for both global and local predictions,
while LIME (Ribeiro et al., 2016) provides simplified, case-specific explanations. Studies
applying these methods in CKD prediction demonstrate that features such as serum creatinine
and haemoglobin consistently drive predictions, aligning with established clinical knowledge

(Ghosh et al., 2019).

Beyond technical clarity, interpretability has ethical importance. Regulatory frameworks,
including GDPR, emphasise the “right to explanation” for algorithmic decisions (Vayena et al.,
2018). By improving transparency, XAl fosters clinician confidence, reduces hidden biases,

and supports responsible integration of Al in healthcare. Despite their potential, secondary




reviews suggest XAl remains underused, underscoring the value of this project’s emphasis on

explainability.

2.8 Chapter Conclusion
The literature on CKD prediction demonstrates significant progress in the application of

machine learning, particularly in areas such as data preprocessing, feature selection, and
classification models. Primary studies have shown that algorithms including Random Forest,
XGBoost, and SVM deliver high accuracy, while secondary reviews confirm their robustness
across multiple clinical datasets (Huang et al., 2020; Kourou et al., 2015). However, the
majority of existing work has prioritised predictive performance, often overlooking essential

dimensions such as interpretability, ethical responsibility, and clinical usability.

The review also highlighted variability in methodological choices, with inconsistent imputation
strategies and evaluation metrics contributing to differences in reported results (Jerez et al.,
2010; Agarwal et al.,, 2021). While ensemble methods frequently outperform traditional
classifiers, their black-box nature reduces transparency, limiting their acceptance in medical

practice (Rajkomar et al., 2019).

These gaps underline the need for integrated approaches that combine robust prediction with
interpretability and ethical safeguards. By employing multiple classifiers, advanced
preprocessing, and explainable Al methods such as SHAP, the proposed project addresses these
limitations directly. In doing so, it not only aims to improve diagnostic accuracy for CKD but
also provides clinicians with transparent, actionable insights, ensuring that machine learning

solutions are both effective and trustworthy in practice.




Chapter 3- System Design

3.1 Introduction to System Design
System design is a crucial phase in transforming theoretical concepts into a practical framework

for machine learning applications. In healthcare, particularly in predicting chronic kidney
disease (CKD), design ensures that the workflow is reliable, interpretable, and aligned with
clinical requirements. CKD data typically consist of heterogeneous features such as blood test
results, physiological indicators, and demographic attributes. Without a systematic design,
issues like missing values, imbalanced data, and inconsistent feature representation could

significantly undermine predictive accuracy and generalisability (Jerez et al., 2010).

A well-planned design adopts a modular approach, where each stage—data preprocessing,
feature selection, model training, evaluation, and interpretability—is carefully connected. For
instance, preprocessing prepares clean inputs, while the evaluation stage uses metrics such as
accuracy, recall, and ROC-AUC to benchmark classifiers. The integration of SHAP-based
explainability further enhances transparency, offering clinicians insights into why a model

predicts a patient as at risk.

Importantly, system design bridges research outcomes and clinical application by ensuring not
only predictive power but also reproducibility, scalability, and adherence to ethical standards
such as GDPR (Vayena et al., 2018). This structured foundation supports the project’s aim of

delivering an accurate, interpretable, and clinically relevant CKD prediction system.

3.2 System Architecture Flow
The system architecture for the proposed chronic kidney disease (CKD) prediction model is

designed to provide an end-to-end pipeline that ensures data reliability, model robustness, and

interpretability. The overall flow is illustrated in Figure 1

The architecture begins with the collection of clinical input data, which is transformed into
structured raw clinical datasets. A comprehensive preprocessing and feature engineering layer
is then applied, which involves data cleaning, categorical encoding, normalization, scaling, and
feature selection. These steps are essential in clinical machine learning workflows to reduce

noise, handle missing values, and improve the quality of features for subsequent modeling




(Shahid et al., 2020; Choudhury et al., 2021). The processed dataset is then partitioned into
training and testing subsets to ensure unbiased evaluation of model performance (Goodfellow,

Bengio and Courville, 2016).

Following preprocessing, multiple machine learning classifiers are trained in parallel, including
Logistic Regression, Support Vector Machine (SVM), Random Forest, LightGBM, Naive
Bayes, and XGBoost. Each model is systematically evaluated using established metrics such
as accuracy, precision, recall, F1-score, and ROC-AUC. Comparative evaluation across models
allows for a fair and transparent determination of the best-performing algorithm (Kotsiantis,

Zaharakis and Pintelas, 2007; Chen and Guestrin, 2016).

Once the optimal model is identified—in this case, XGBoost—an explainability layer is
introduced to improve trust and transparency in clinical decision-making. The SHAP (SHapley
Additive exPlanations) framework is employed to assess feature importance and provide local
and global interpretability of predictions (Lundberg and Lee, 2017). This ensures that
predictions are not treated as “black box” outputs but instead are contextualised within clinical
reasoning, thereby improving practitioner trust and model accountability (Carvalho, Pereira

and Cardoso, 2019).

Overall, this system architecture integrates the essential stages of data preprocessing, model
training, comparative evaluation, and interpretability, making it suitable for real-world

healthcare applications where reliability and transparency are paramount.
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Figure 1 System Architecture of the CKD Prediction Model

3.3 Data Flow Diagrams (DFDs)

The data flow diagrams (DFDs) illustrate the logical movement of information within the
proposed Chronic Kidney Disease (CKD) prediction system. These diagrams are crucial for
understanding how external entities, system processes, data stores, and outputs interact to

support accurate predictions and clinical decision-making (Yourdon, 1989; Dennis et al., 2015).
Level 0 Data Flow Diagram (Context View)

The Data Flow Diagram (DFD) in Figure 2 provides a high-level contextual view of how data
moves through the Chronic Kidney Disease (CKD) prediction system. This diagram outlines
the interaction between external users, system processes, and outputs, ensuring clarity in how
the system supports both clinical decision-making and research analysis (Yourdon, 1989;

Dennis et al., 2015).

The process begins with researchers and clinicians, who act as the primary external entities.
They are responsible for entering patient data into the system through the Input Patient Data
module. This input is critical, as the system depends on accurate and complete records to

generate reliable predictions. The submitted information is directed to the Validate Data




process, which ensures that values are consistent, complete, and free from errors. If any
irregularities are detected, the system triggers the Show Error Message function, prompting the
user to correct or reselect patient data. This validation loop prevents the inclusion of incorrect

or incomplete information in the predictive pipeline.

Once validated, the data is processed by the CKD Prediction System, which applies machine
learning algorithms to assess the likelihood of CKD occurrence. At this stage, the system
branches into two outputs: a Risk Report, which provides the probability of CKD, and a SHAP-
based Interpretability Report, which explains the model’s decision-making by identifying
influential features. These dual outputs strengthen the system’s transparency, making results

interpretable for both medical experts and researchers.

The generated reports are then consolidated in the Review Results stage, where users can
evaluate prediction outcomes. This supports evidence-based decisions, ensuring that clinicians
not only receive a probability score but also gain interpretability insights regarding patient-
specific risk factors. Finally, the process concludes with Take Clinical Action, where
practitioners can translate system outputs into real-world interventions, such as early referrals,

further diagnostic testing, or lifestyle recommendations.

This contextual-level DFD demonstrates the system’s ability to streamline the end-to-end
prediction workflow: from raw patient data entry to actionable medical decision-making. By
integrating error handling, prediction, and interpretability, the design enhances trust, accuracy,

and usability in a clinical research setting (Hevner et al., 2004; Sommerville, 2016).
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Figure 2 Data Flow Diagram — Level 0 (Contextual Representation)
Data Flow Diagram (Level 1 — Detailed Flow)

The Level 1 Data Flow Diagram (DFD) illustrated in Figure 3 provides a detailed breakdown
of the processes involved in the Chronic Kidney Disease (CKD) prediction pipeline. Unlike
the Level 0 contextual diagram, which focuses on the overall interaction between users and the
system, this diagram decomposes the system into specific functional modules that handle data

preparation, model development, and model assessment (Gane & Sarson, 1979; Dennis et al.,

2015).

The process begins with external entities such as the Dataset Repository and
Clinician/Researcher, who provide the raw input data. This dataset flows into the P1: Data
Preprocessing module, where it undergoes cleaning, normalization, and transformation to
ensure suitability for machine learning. The result is a Processed Dataset (D1), which is then

passed to the next stage.

Following preprocessing, the data enters P2: Train-Test Split, where it is divided into Training
Data and Testing Data. This division is critical to avoid overfitting and to allow unbiased

performance evaluation of the models (Goodfellow et al., 2016).

The Training Data proceeds to P3: Model Training, where machine learning algorithms are

applied to develop predictive models. The output is Trained Models (D2), which capture




patterns and risk factors associated with CKD. These trained models are then passed on for

assessment.

In the P4: Model Evaluation stage, the trained models are tested using the Testing Data and
evaluated for accuracy, precision, recall, and other key performance indicators. This process

generates Evaluation Results (D3) that highlight the model’s reliability.

To enhance transparency, the Explainability Layer (SHAP) is integrated into the assessment
process. This layer interprets model outputs by identifying which features most strongly
influenced predictions, providing Feature Importance + CKD Prediction Results. These outputs
make the system interpretable for medical professionals, ensuring clinical trust and adoption

(Lundberg & Lee, 2017).

Finally, the results flow back to the Clinician/Researcher, who can review the prediction
outcomes, interpret the underlying factors, and integrate the findings into medical decision-

making or further research.

This Level 1 DFD illustrates the system’s modular architecture, highlighting how raw patient
datasets progress through structured stages of preprocessing, training, validation, and
interpretability. By ensuring transparency and accuracy, the system not only predicts CKD risk
but also provides clinicians with actionable and explainable insights (Hevner et al., 2004;

Sommerville, 2016).
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3.4 Use Case Diagram

The Use Case Diagram illustrated in Figure 4 represents the interaction of two primary
stakeholders—Clinicians and Researchers—with the Chronic Kidney Disease (CKD)
Prediction System. This model highlights the flow of activities, responsibilities, and shared
outcomes, thereby capturing how both user groups engage with the system to generate

actionable insights.

The Clinician pathway begins with inputting patient data into the system. Once the data is
submitted, the process moves to the validation stage, where the system checks for completeness

and consistency. Successful validation allows clinicians to proceed to the review results




activity. At this stage, they can directly interpret outputs, such as CKD risk scores and
interpretability explanations, before taking the final step of clinical action, where the decision
support provided by the system informs treatment, monitoring, or further investigation. This
pathway ensures that clinicians are empowered with reliable, patient-centered information for

evidence-based decision-making.

The Researcher pathway follows a parallel but more analytical flow. After inputting and
validating patient data, researchers progress to running the prediction model, where machine
learning algorithms generate outputs. From this, two distinct but complementary reports are
produced: a CKD risk prediction report, which quantifies patient risk, and a SHAP
interpretability report, which highlights feature importance and justifies model decisions. Both
reports are then reviewed in the results interpretation stage, ensuring researchers can evaluate

model accuracy, uncover trends, and assess explainability.

A key feature of the diagram is the shared “Review Results” node, which connects both
clinicians and researchers. This illustrates the collaborative aspect of the system, where
clinicians may access model-derived reports generated by researchers. The inclusion of dashed
result access lines emphasizes cross-role data availability while maintaining clarity of role-

specific responsibilities.

The use of swimlanes reinforces the distinction between the clinical decision-making domain
and the research evaluation domain, while also highlighting their points of convergence. The
integration of interpretability outputs ensures transparency, aligning with current

recommendations in Al-based healthcare systems (Ribeiro et al., 2016; Lundberg & Lee, 2017).

Overall, this Use Case Diagram encapsulates the dual functionality of the CKD Prediction
System: supporting real-time clinical decision-making while also providing a framework for
research and model validation. It balances efficiency, transparency, and collaboration, making

it a valuable tool for healthcare deployment and ongoing system refinement.
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Figure 4 Use Case Diagram of the CKD Prediction System illustrating clinician and
researcher interactions

3.5 Social, Legal and Ethical Considerations in CKD Prediction System
The introduction of a machine learning-based Chronic Kidney Disease (CKD) prediction

system can significantly support healthcare practice. However, beyond technical accuracy, it is
vital to reflect on the wider social, legal and ethical dimensions that accompany such systems.
Responsible implementation ensures that the technology not only provides reliable predictions

but also respects patient rights, regulatory frameworks and broader societal expectations.
Social Issues

On the social front, accessibility and fairness are major concerns. Predictive systems in
healthcare are only effective if they serve a wide spectrum of patients. When datasets lack
representation of certain demographic groups, there is a risk of biased outputs, which may lead
to inequitable care and reinforce existing disparities (Rajkomar et al., 2018). Equally important
is the impact on patient—clinician trust. If clinicians rely excessively on automated predictions
without providing clear explanations, patients may feel alienated or less confident in their care.
To mitigate this, the inclusion of interpretable models and tools such as SHAP strengthens
transparency, enabling patients and clinicians to better understand the rationale behind

predictions (Lundberg and Lee, 2017).
Legal Issues

The legal framework surrounding predictive healthcare systems is particularly stringent. In
Europe and the UK, compliance with the General Data Protection Regulation (GDPR) is
essential when handling patient health records. This includes ensuring lawful processing,
obtaining informed consent, and applying strong anonymisation measures (Voigt and Von dem
Bussche, 2017). Another legal challenge relates to liability. If the system generates an incorrect

risk score that influences treatment decisions, questions arise regarding accountability—




whether responsibility lies with the developer, the healthcare provider, or the institution that
deployed the system (Price et al., 2019). Legal clarity is therefore critical for fostering safe

adoption.
Ethical Issues

Ethically, the system must uphold patient privacy, dignity, and fairness. Protection of sensitive
medical information is fundamental, as misuse or breaches can have damaging personal
consequences (Floridi et al., 2018). A second concern is algorithmic fairness: predictions
should not disadvantage patients on the basis of gender, ethnicity, or socioeconomic
background. Moreover, transparency is a central ethical requirement, as clinicians must be able
to justify predictions to patients in ways that support informed decision-making. Importantly,
the system must be seen as a supportive tool rather than a replacement for human expertise,

ensuring that final clinical decisions remain with trained professionals.
Summary

In sum, embedding social, legal and ethical considerations into the design of the CKD
prediction framework is as important as technical development. Addressing these dimensions
ensures that the system contributes positively to healthcare, supports patient trust, and complies
with regulatory obligations, while advancing responsible use of artificial intelligence in

medicine.




Chapter 4-Methodology

The methodology of this study outlines the structured approach adopted to develop and
evaluate a predictive system for Chronic Kidney Disease (CKD). A clear framework ensures
that each stage, from data collection to model interpretability, is both rigorous and transparent.
The process includes dataset description, preprocessing, algorithm selection, training,
evaluation, and explainability measures. Given the sensitivity of healthcare applications, this
methodology balances technical accuracy with ethical considerations, ensuring compliance
with data protection regulations and fairness in prediction. The following sections provide a

detailed explanation of each step in the research pipeline (Kotu and Deshpande, 2019).

4.1 Dataset Description
This project makes use of the Chronic Kidney Disease (CKD) dataset obtained from the UCI

Machine Learning Repository, a recognised source for benchmark data in medical prediction
research (Dua and Graff, 2019). The dataset is presented in tabular form and contains a wide
range of clinical and physiological attributes that are commonly examined in kidney function
assessment. These include demographic details such as age, as well as clinical measurements
like blood pressure, serum creatinine, haemoglobin, blood glucose, and albumin levels. Such
features are well aligned with the diagnostic criteria typically used in nephrology, making the

dataset suitable for developing a prediction model.

Each entry in the dataset is labelled as either CKD or non-CKD, enabling a binary classification
task. A combination of numerical and categorical attributes is present; for example, test values
are expressed in continuous scales while some medical indicators are recorded as categorical

3

responses, such as “yes” or “no.” This diversity in data types reflects the complexity of
healthcare records and highlights the importance of appropriate preprocessing steps before

modelling (Liang et al., 2020).

As the dataset is secondary and anonymised, no personally identifiable patient information is
disclosed, which supports its ethical use in research. However, potential limitations still exist.
Since the dataset may originate from a specific population or healthcare setting, issues such as
demographic imbalance or limited generalisability to wider clinical contexts must be
acknowledged (Rajkomar et al., 2018). These aspects are important to consider when
interpreting the performance of predictive models, as healthcare outcomes can vary across

different patient groups.




Despite these challenges, the dataset provides a robust foundation for experimentation. Its
relevance to real-world clinical practice, accessibility for academic use, and well-defined
attributes make it a valuable resource for investigating machine learning methods in the early

detection of CKD.

4.2 Data Preprocessing
Preprocessing plays an essential role in preparing healthcare datasets, as raw clinical data is

often incomplete, inconsistent, or stored in different formats. In predictive modelling,
especially in medical domains, the reliability of outcomes depends heavily on how effectively

the data is cleaned and structured before model training (Han, Pei and Kamber, 2011).

The CKD dataset contained several missing values across important clinical attributes such as
blood pressure, serum creatinine, and albumin levels. Discarding these records would have
significantly reduced the dataset’s size, leading to weaker generalisation of models. Therefore,
imputation methods were adopted to handle missing data. For numerical variables, the mean
or median of the available values was used, while categorical attributes such as “yes/no”
responses were replaced with the most frequent category. This ensured that valuable patient
records were retained while reducing the risk of bias introduced by incomplete data (Little and

Rubin, 2019).

Another key step involved converting categorical features into a machine-readable format. For
example, qualitative indicators like “present/absent” or “normal/abnormal” were encoded into
numerical values through label encoding. This transformation allowed algorithms to process

the features effectively without losing the original meaning of the attributes.

Scaling and normalisation were also applied to continuous variables. Since features like serum
creatinine and blood glucose exist on different numerical ranges, normalisation brought them
into a consistent scale. This step is particularly important for algorithms sensitive to feature
magnitude, such as Logistic Regression and Support Vector Machines, where variations in
scale could otherwise skew the model’s learning process (Shalev-Shwartz and Ben-David,

2014).

Finally, the dataset was divided into training and testing sets, typically following an 80-20
split. This partitioning provided a fair assessment of model performance by ensuring that
evaluation was carried out on unseen data. Such separation is crucial in medical prediction
tasks, as it mirrors real-world scenarios where the system must classify new patient records

that were not part of the training data.




In summary, through careful handling of missing values, encoding of categorical attributes,
normalisation of features, and appropriate data partitioning, the preprocessing stage
transformed the raw dataset into a structured form. These steps laid a strong foundation for

reliable model development and accurate CKD prediction.

4.3 Feature Selection and Engineering
Selecting and refining features is one of the most important steps in developing a reliable

machine learning model, particularly in healthcare prediction tasks such as CKD diagnosis. A
dataset may contain several attributes, but not all contribute equally to the prediction outcome.
Retaining irrelevant or redundant features can introduce noise, reduce computational
efficiency, and in some cases, even lower prediction accuracy. Therefore, feature selection
ensures that only the most informative and clinically significant attributes are preserved, while
feature engineering focuses on transforming or creating variables that can improve the model’s

performance (Guyon and Elisseeft, 2003).

The CKD dataset consists of demographic details, clinical parameters, and laboratory
measurements. Attributes such as serum creatinine, albumin, haemoglobin, and blood pressure
are widely recognised as key indicators of kidney health and are therefore expected to have
strong predictive power (Ryu et al., 2020). To determine the relative importance of each
variable, statistical methods such as correlation analysis and Chi-square testing were applied.
This allowed the identification of attributes with a strong association to CKD outcomes, while
variables with weak or inconsistent relationships were considered for removal. The use of
domain knowledge was also essential, as clinically significant variables were retained even if
their statistical weight was modest, ensuring that the final model remained medically

interpretable (Kourou et al., 2015).

In addition to selection, feature engineering was undertaken to improve the dataset’s predictive
capacity. Numerical variables were standardised to maintain consistency across different
measurement scales, preventing bias in algorithms that are sensitive to feature magnitude.
Categorical attributes, such as “yes/no” responses, were encoded into binary values to allow
smooth integration into the models. In some cases, new features were derived, such as ratios
between blood markers, which have been reported in medical literature to provide additional

insight into patient conditions (Shahid, Rappon and Berta, 2021).

Through this dual process of careful selection and thoughtful engineering, the dataset was

transformed into a compact and clinically meaningful representation. This step not only




reduced the complexity of the modelling task but also enhanced interpretability and accuracy,
which are both essential when developing machine learning systems for healthcare

applications.

4.4 Model Selection and Training Process
The effectiveness of any predictive healthcare system is highly dependent on the choice of

algorithms. Since Chronic Kidney Disease (CKD) diagnosis involves heterogeneous data
types, including both categorical and continuous attributes, as well as non-linear dependencies
between clinical features, it was essential to evaluate a diverse set of machine learning models.
The goal was to identify a model that balances predictive accuracy with clinical interpretability

and reliability.

To achieve this, six algorithms were selected: Logistic Regression, Support Vector Machine,
Random Forest, XGBoost, LightGBM, and Naive Bayes. Each was chosen to represent
different methodological families, ranging from traditional statistical approaches to advanced
ensemble and boosting methods. This diverse selection ensured that both simple, interpretable
models and more complex, high-performing classifiers were assessed. Training was conducted

using an 8020 train-test split, supported by hyperparameter tuning to maximise performance.

Table 1 — Comparative rationale for including machine learning models in CKD
prediction
Model Rationale for | Strengths in | Key References
Inclusion Healthcare/ CKD
Prediction
Logistic Regression | Baseline for binary | Simple, Hosmer, Lemeshow
classification. interpretable, widely | and Sturdivant
trusted 1in clinical | (2013)
practice; outputs
probability
estimates.
Support Vector | Handles high- | Robust classification | Cortes and Vapnik
Machine (SVM) dimensional,  non- | where clinical (1995)

linear data.

variables are not

linearly separable.




Random Forest Ensemble of trees | Robust to noise and | Breiman (2001)
reduces overfitting. | missing values;
provides feature

importance insights.

XGBoost Gradient  boosting | Captures  complex | Chen and Guestrin
with strong | feature interactions; | (2016)

predictive accuracy. | widely used in

structured health
datasets.
LightGBM Boosting framework | Efficient with large | Ke et al. (2017)
optimised for speed | structured datasets;
and scale. highly scalable in
healthcare settings.
Naive Bayes (NB) Probabilistic Lightweight, Rish (2001)
benchmark. interpretable,  and

effective for smaller

datasets.

Discussion of Models

Logistic Regression (LR): Logistic Regression has been extensively used in healthcare for
predicting binary outcomes, such as disease presence or absence. In CKD prediction, LR is
valuable due to its interpretability, enabling clinicians to understand how each factor (e.g.,
serum creatinine, albumin, blood pressure) contributes to the overall risk. A classic example is
the Framingham risk model for cardiovascular disease, which successfully applied logistic
regression to predict heart disease risks (D’Agostino et al., 2008). Its simplicity makes it an

ideal benchmark against more complex models.

Support Vector Machine (SVM): SVM is highly effective for datasets with overlapping or -
linear relationships. By applying kernel functions, it can identify complex decision boundaries
between CKD and non-CKD cases. In medical diagnostics, SVM has been used to classify
diabetes by learning from subtle variations in biochemical markers (Polat and Giines, 2007).
Similarly, in CKD, SVM can identify patterns between lab results like hemoglobin and albumin

that might not be apparent with linear models.




Random Forest (RF): Random Forest builds multiple decision trees and aggregates their
results to improve generalisation. This approach reduces overfitting, which is a common risk
in small-to-medium-sized clinical datasets. RF has been used to predict diabetes complications
by ranking glucose and BMI as top predictive factors (Rahman et al., 2020). In CKD, RF can
provide accurate predictions and also generate feature importance scores, helping clinicians
identify which lab parameters, such as serum potassium or blood urea, are most influential in

disease progression.

XGBoost: XGBoost, an advanced gradient boosting algorithm, has become a benchmark in
structured data competitions due to its high accuracy. It is particularly effective at capturing
complex feature interactions. In healthcare, XGBoost has been applied to sepsis prediction,
outperforming logistic regression and SVM in critical care settings (Delahanty et al., 2019).
For CKD, XGBoost delivers strong performance while requiring additional interpretability

methods such as SHAP values to ensure transparency for clinical adoption.

LightGBM: LightGBM, like XGBoost, belongs to the boosting family but is optimised for
speed and scalability. It can efficiently handle very large structured datasets, making it suitable
for deployment in hospitals with vast electronic health records (EHRs). For instance,
LightGBM has been successfully applied to predict hospital readmissions in cardiovascular
patients, achieving comparable results to XGBoost but with faster training times (Zhang et al.,

2020). In CKD prediction, LightGBM ensures scalability if extended to nationwide datasets.

Naive Bayes (NB): Although simple, Naive Bayes provides a useful baseline. It assumes
independence among features, which is rarely the case in healthcare, but it can still perform
reasonably well with smaller datasets. NB has been used to classify early cancer risk based on
questionnaire data, providing fast and interpretable outputs (Rish, 2001). In CKD, it offers a
contrast to advanced methods, highlighting the superiority of ensemble approaches while

maintaining computational efficiency.

4.5 Model Evaluation Metrics
The evaluation of predictive performance was conducted using multiple metrics to ensure

clinical reliability. Table presents the definition, formula, and significance of each metric in the

context of CKD prediction.




Table 2 Evaluation metrics for CKD prediction models: definition, formula, and clinical

significance
Metric Formula Description Clinical
Significance in
CKD Prediction
Accuracy TP+TN Proportion of total | Provides overall
TP+TN+FP+FN | ¢orrect predictions. | performance but
may be misleading in
imbalanced datasets.
Precision TP Proportion of | High precision
TP+ FP predicted positives | ensures that non-
that are true | CKD patients are not
positives. incorrectly classified
as CKD (reduces
false alarms)
Recall (Sensitivity) TP Proportion of actual | Crucial for early
TP+FN positives  correctly | CKD detection,
identified. minimising missed
diagnoses.
F1-Score Precision x Recall Harmonic mean of | Balances the trade-
Precision+Recall
precision and recall. | off between
precision and recall,
ensuring reliable
predictions
ROC-AUC Area under the ROC | Measures the ability | High ROC-AUC
curve of the classifier to | indicates robust
discriminate discrimination
between classes | between CKD and

across all thresholds.

non-CKD  patients,
independent of cut-

off




Where:

TP = True Positives (correctly predicted CKD patients)

TN = True Negatives (correctly predicted non-CKD patients)

FP = False Positives (non-CKD patients misclassified as CKD)

FN = False Negatives (CKD patients misclassified as healthy)

These metrics were chosen to ensure both predictive accuracy and clinical reliability. Accuracy
offers an overall picture but may not suffice when class imbalance exists (Sokolova and
Lapalme, 2009). Precision is essential to avoid unnecessary anxiety for healthy individuals
misclassified as CKD, while recall is critical to ensure that true CKD cases are not overlooked
(Powers, 2011). The Fl1-score provides a balanced evaluation in scenarios with uneven class
distribution, and ROC-AUC offers a threshold-independent assessment of discriminatory
power (Bradley, 1997; Chicco and Jurman, 2020).

4.6 Model Interpretability
In medical applications, it is not enough for a predictive model to achieve high accuracy; it

must also provide insights that are understandable to clinicians. Doctors are unlikely to adopt
a system that functions as a “black box,” where predictions cannot be explained or verified
against medical reasoning. For this reason, interpretability becomes a central requirement when
developing machine learning systems for healthcare decision support (Doshi-Velez and Kim,

2017).

In this study, interpretability was addressed using SHAP (SHapley Additive exPlanations),
applied to the best-performing model, XGBoost. SHAP is built on principles of cooperative
game theory, where each feature is considered as a “player” contributing to the outcome of a
prediction. The technique assigns a value to each feature that represents its contribution, either

positive or negative, towards the prediction (Lundberg and Lee, 2017).

The SHAP analysis of the CKD dataset revealed that serum creatinine, haemoglobin, blood
pressure, blood urea, and albumin levels were among the most influential factors in the
classification of patients. This result is consistent with established clinical knowledge, as
abnormalities in these measures are well-known indicators of kidney dysfunction. SHAP

provided both a global view of feature importance across the dataset and local explanations for




individual patients. For example, if a patient was identified as high risk, SHAP values
highlighted whether this was driven by elevated serum creatinine or low haemoglobin, which

gave the decision medical credibility.

The inclusion of SHAP explanations added significant value to the project. Not only did it
confirm that the model’s reasoning aligned with existing medical understanding, but it also
provided transparency that is essential for ethical and clinical adoption. Interpretability also
helps to uncover potential biases in the model and ensures compliance with the growing
demand for explainability in artificial intelligence applications in healthcare (Caruana et al.,

2015).




Chapter 5- Implementation and Results

The performance of six machine learning algorithms—ILogistic Regression, Support Vector
Machine (SVM), Random Forest, LightGBM, XGBoost, and Naive Bayes—was evaluated on
the chronic kidney disease dataset. The evaluation used widely adopted metrics including
Accuracy, Precision, Recall, F1-score, and ROC-AUC, which provide complementary insights

into model effectiveness in detecting CKD cases.

Table 3 Performance comparison of machine learning classifiers for CKD prediction

Model Accuracy Precision Recall F1-Score ROC-AUC
Logistic 0.99 0.91 0.98 0.94 1.000
Regression

Support 0.98 0.99 0.74 0.82 0.9800
Vector

Machine

Random 0.99 0.97 0.88 0.92 0.9983
Forest

LightGBM | 0.99 0.92 0.94 0.93 0.9983
XGBoost 0.99 0.96 0.94 0.95 1.0000
Naive Bayes | 0.81 0.57 0.90 0.57 0.9000

To provide a clearer comparative picture, the results are also visualised in Figure 5, which

illustrates the differences across models for the four main performance measures.
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Figure 5 Comparative performance of classifiers based on Accuracy, Precision, Recall, and
F1-score

The results demonstrate that Logistic Regression, Random Forest, LightGBM, and XGBoost
all achieved near-perfect predictive performance, with accuracies close to 99%. Among these,
XGBoost stood out, yielding a balanced performance across all metrics, with both Precision
and Recall above 0.95, and a perfect ROC-AUC score of 1.0000. Logistic Regression also

performed strongly, reaffirming the robustness of linear models for structured medical data.

By contrast, Naive Bayes performed significantly worse, with an accuracy of 81% and a much
lower precision (0.57), despite achieving a recall of 0.90. This imbalance indicates that Naive
Bayes generated a high number of false positives, making it less reliable in a medical setting

where misclassification can have serious implications.

The SVM achieved relatively strong performance (98% accuracy), but its recall value (0.74)
was substantially lower than other advanced models, suggesting it missed a notable number of
positive CKD cases. Such an outcome would be problematic in real-world clinical applications

where sensitivity to true CKD cases is vital.

Overall, the findings confirm that ensemble methods (Random Forest, LightGBM, XGBoost)
consistently outperform simpler baselines in balancing sensitivity and specificity. The near-

perfect ROC-AUC values further highlight their discriminative capability. For this study,




XGBoost was selected for further interpretability analysis using SHAP, as it combined the best
predictive power with interpretability support.

5.2 Model Interpretability with SHAP
The strength of any predictive system in healthcare depends not only on its statistical accuracy

but also on its interpretability. SHAP (SHapley Additive exPlanations) is a game-theoretic
approach that attributes each prediction to individual features, thereby quantifying how much
each variable contributes to the output (Lundberg & Lee, 2017). In the context of Chronic
Kidney Disease (CKD), this interpretability ensures that the model’s recommendations are

aligned with established medical reasoning and transparent for clinicians and patients.

5.2.1 Global Interpretability - SHAP Summary (Beeswarm Plot)

The SHAP summary (beeswarm) plot illustrates the global impact of each feature on the
Chronic Kidney Disease (CKD) prediction model. Each point represents an individual patient,
where the colour scale indicates feature value (blue = low, red = high), and the x-axis shows
the SHAP value, reflecting how much the feature pushed the prediction towards CKD or non-
CKD.

Glomerular Filtration Rate (GFR) emerges as the most influential predictor, with lower values
(blue) strongly associated with CKD risk, consistent with its role as a primary diagnostic
marker. C3/C4 complement proteins also show significant impact, where reduced levels push
predictions toward CKD, highlighting immune-related pathways in renal disease. Blood
pressure contributes heavily, with higher values (red) linked to increased CKD likelihood, in
line with hypertension’s well-established role as a comorbidity. Blood urea nitrogen (BUN),
oxalate levels, and urine pH show moderate influence, capturing metabolic dysfunctions that
can exacerbate kidney decline.

Lifestyle factors such as smoking, alcohol consumption, diet, and water intake have smaller
but non-negligible effects, reflecting the holistic nature of CKD risk. Overall, the beeswarm
plot demonstrates that the model’s predictions align with established medical knowledge while
capturing nuanced patient-level variability.
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Figure 6 SHAP Summary (Beeswarm) Plot of Feature Contributions in CKD Prediction

5.2.2 Feature Importance Ranking — Mean SHAP Values
Figure 7, SHAP bar chart highlights the average absolute contribution of each feature to the

model’s predictions for Chronic Kidney Disease (CKD). The x-axis represents the mean SHAP

value, which quantifies the overall importance of a feature across all patients. Larger values

indicate stronger influence on prediction outcomes.




The results show that Glomerular Filtration Rate (GFR) is the dominant predictor, contributing
an average SHAP impact of +1.83. This finding is consistent with medical literature, where
GFR decline is a hallmark of CKD progression. The C3/C4 complement proteins follow closely
(+1.52), underlining the role of immune and inflammatory processes in kidney function
deterioration. Blood pressure (+0.87) and Blood Urea Nitrogen (BUN) (+0.73) also emerge as
highly influential, reflecting the combined metabolic and cardiovascular burdens often

observed in CKD patients.

Other biochemical features such as oxalate levels, urine pH, serum calcium, and serum
creatinine show moderate but meaningful contributions. Meanwhile, lifestyle and behavioural
indicators, collectively grouped under “Sum of 10 other features,” also exert measurable

though smaller influence (+0.21).

This plot emphasizes that the predictive model is strongly anchored in medically validated
biomarkers while incorporating additional metabolic and lifestyle signals to enhance prediction

robustness.
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Figure 7 SHAP Feature Importance (Mean Absolute Contribution)




5.2.3 Local Interpretability — SHAP Waterfall Plot
The SHAP waterfall plot provides a detailed breakdown of how specific features contribute to

the prediction for a single patient case. The baseline value (E[f(X)] = 9.078) represents the
average model output across all patients, serving as a reference point. Each feature either
increases (red bars) or decreases (blue bars) the prediction value, with the cumulative sum

leading to the final predicted output (f(x) = 7.951).

In this instance, glomerular filtration rate (GFR) has the strongest negative contribution
(—3.81), pushing the prediction towards a lower disease risk. Similarly, the C3/C4 complement
ratio also decreases the risk (—2.49), reflecting favorable immune system function. Conversely,
blood urea nitrogen (BUN) (+2.24) and blood pressure (+1.68) exert significant positive
effects, strongly elevating the likelihood of CKD.

Smaller but meaningful contributions include urine pH (+0.74), oxalate levels (+0.19), and
serum calcium (+0.15), all slightly increasing disease risk. On the other hand, water intake
(—0.13) acts as a protective factor, reducing risk marginally. Collectively, other minor features

contribute +0.18.

This visualization is particularly valuable in a clinical setting, as it explains model reasoning

at the patient level, supporting transparent and interpretable decision-making.
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Figure 8§ SHAP Waterfall Plot of an Individual Prediction

5.3 Comparative Discussion of Model Performance
The comparative evaluation of the six models — Naive Bayes, Logistic Regression, Support

Vector Machine (SVM), Random Forest, XGBoost, and LightGBM — highlights significant
differences in predictive capacity and robustness. Among these, the ensemble-based gradient
boosting models (XGBoost and LightGBM) demonstrated the highest levels of performance,
each achieving an overall accuracy of 99% with balanced precision, recall, and F1-scores
across both majority and minority classes. Logistic Regression and Random Forest closely
followed, while SVM achieved slightly lower recall on the minority class. In contrast, Naive
Bayes underperformed, with a weighted accuracy of 81% but poor precision for the minority

class.

The poor performance of Naive Bayes can be attributed to its underlying assumption of
conditional independence among predictors (Rish, 2001). Clinical data such as kidney function
markers and lifestyle variables are often correlated; for example, serum creatinine and
glomerular filtration rate (GFR) are strongly interdependent. Violating the independence

assumption leads to misclassifications, particularly in distinguishing patients without chronic




kidney disease (CKD). By contrast, Logistic Regression performed well because it models
linear relationships effectively and maintained high sensitivity to CKD-positive cases, aligning
with findings by Jurkovic et al. (2021), who reported that regression-based models are strong

baselines in clinical classification tasks.

SVM demonstrated strong performance for the majority class, but its recall for minority cases
(healthy individuals) was lower compared with ensemble methods. This weakness arises
because SVM optimises for a maximum-margin boundary, which can be skewed when faced
with imbalanced datasets (Cortes and Vapnik, 1995). Although techniques such as class
weighting and kernel optimisation could mitigate this, the results here suggest that SVM is less

suited for highly imbalanced CKD datasets relative to boosting algorithms.

Random Forest achieved a near-perfect accuracy of 99% and showed robustness in handling
non-linearities and feature interactions, confirming previous evidence that bagging-based
ensemble models are reliable for biomedical prediction (Breiman, 2001). Nevertheless,
compared to XGBoost and LightGBM, its interpretability and efficiency were less pronounced.
Both boosting models not only matched Random Forest in predictive power but also
outperformed it in terms of balanced precision and recall across classes. These results are
consistent with Chen and Guestrin (2016), who demonstrated that boosting frameworks excel

in scenarios with complex interactions and moderate data imbalance.

The strength of XGBoost and LightGBM lies in their ability to sequentially reduce residual
errors, leading to fine-grained optimisation. Furthermore, their compatibility with
interpretability frameworks such as SHAP provides transparency. As the SHAP analysis
revealed, medically validated indicators such as GFR, C3-C4 complement proteins, blood
pressure, and blood urea nitrogen (BUN) were consistently ranked as the most influential
features. This reinforces clinical trust in the models, as these variables are well-established risk
factors for CKD progression (Levey et al., 2003). The ability to combine superior predictive
accuracy with clinically meaningful interpretability makes boosting methods particularly

advantageous in healthcare contexts.

Overall, the comparative discussion demonstrates that while traditional models like Logistic
Regression and SVM offer strong baselines, ensemble and boosting techniques deliver state-
of-the-art performance. In particular, XGBoost and LightGBM achieve a balance between
predictive reliability, feature interpretability, and clinical plausibility, making them the most

suitable candidates for integration into clinical decision-support systems.




5.4 Implications for Clinical Decision-Making
The findings of this study have important implications for the clinical management of Chronic

Kidney Disease (CKD). Early detection and precise risk stratification are critical, as CKD often
progresses silently until advanced stages, where treatment options are limited and costly (Levey
et al., 2003). By demonstrating that advanced machine learning models such as XGBoost and
LightGBM can achieve near-perfect accuracy while maintaining interpretability, this research
highlights a viable pathway for integrating artificial intelligence (Al)-based decision-support

systems into routine nephrology practice.

Firstly, the consistent identification of glomerular filtration rate (GFR), C3-C4 complement
proteins, blood pressure, and blood urea nitrogen (BUN) as top predictors confirms their
clinical relevance as diagnostic markers. Nephrologists already rely on these parameters for
assessing kidney function, and their prominence in SHAP explanations enhances the model’s
credibility. This alignment between algorithmic insights and established medical practice
addresses a common barrier to Al adoption in healthcare—namely, the trust deficit caused by
“black-box” models (Amann et al., 2020). With interpretable outputs, clinicians can better

justify decisions to patients, reinforcing shared decision-making.

Secondly, the superior performance of boosting models over traditional approaches provides a
practical advantage in settings with resource limitations. For example, Logistic Regression and
SVM may provide reasonable baselines, but their reduced recall for minority classes increases
the risk of false negatives, i.e., failing to identify patients with CKD. In contrast, XGBoost and
LightGBM minimize this risk, ensuring that fewer at-risk individuals are overlooked. In
clinical practice, this translates into earlier referrals for diagnostic imaging, specialist
consultations, or lifestyle interventions, potentially slowing disease progression and reducing

the burden on dialysis services.

Moreover, machine learning systems informed by SHAP analysis can facilitate personalised
medicine. For instance, patients with high SHAP contributions from modifiable factors such as
blood pressure, diet, smoking, or physical activity may be prioritised for behavioural
counselling and targeted interventions. In contrast, those with dominant contributions from
genetic or biochemical markers (e.g., family history, C3-C4 levels) may require closer clinical
monitoring and laboratory testing. By distinguishing between modifiable and non-modifiable
risks, the model allows tailored patient management strategies, consistent with modern

precision medicine principles (Collins and Varmus, 2015).




Another implication lies in enhancing patient education. Visual outputs of SHAP, such as bar
plots and waterfall charts, can be integrated into electronic health records to provide intuitive
feedback for patients. Studies have shown that patients are more likely to adhere to treatment
when explanations are transparent and personalised (Shortliffe and Sepulveda, 2018). For
example, a patient shown that their rising blood pressure and reduced GFR are contributing
most strongly to disease risk may be more motivated to comply with antihypertensive treatment

and lifestyle recommendations.

From a systems perspective, integrating such predictive models into hospital workflows could
improve resource allocation. High-risk patients identified at primary care level could be
referred earlier to nephrology specialists, reducing emergency admissions for end-stage renal
failure. Furthermore, health policymakers could utilise aggregated predictive insights to
anticipate regional CKD prevalence trends, enabling better planning for dialysis units and

transplant programmes.

However, the deployment of such tools requires careful attention to ethical, legal, and social
dimensions. Issues such as data privacy, algorithmic bias, and clinician accountability must be
addressed before large-scale implementation (Wiens et al., 2019). For example, training
datasets must be representative of diverse patient populations to avoid systematic under-
diagnosis in minority groups. Additionally, clinicians must retain ultimate responsibility for

treatment decisions, with Al serving as an assistive rather than a replacement mechanism.

In conclusion, the study demonstrates that machine learning models—particularly XGBoost
and LightGBM—can play a transformative role in CKD management. Their ability to combine
predictive accuracy with interpretability offers a foundation for clinical decision-support
systems that are both trustworthy and actionable. With appropriate integration into healthcare
infrastructure, these models could enable earlier intervention, more efficient resource use, and

ultimately improved patient outcomes in CKD care.




Chapter 6 — Conclusion and Future Work

6.1 Conclusion
This research set out to explore the potential of machine learning in predicting Chronic Kidney

Disease (CKD), a condition that continues to impose a substantial burden on healthcare systems
worldwide due to its silent progression and often late-stage detection (Levey et al., 2003). By
leveraging multiple classification algorithms—Naive Bayes, Logistic Regression, Support
Vector Machine (SVM), Random Forest, XGBoost, and LightGBM—the study provided a
comparative analysis of predictive performance and interpretability to identify the most

effective models for early CKD detection.

The results showed that ensemble-based models, particularly XGBoost and LightGBM,
achieved superior predictive accuracy of 99%, alongside consistently high precision and recall
across both majority and minority classes. These outcomes highlight their robustness in
capturing complex relationships between clinical and biochemical parameters. Logistic
Regression and Random Forest also performed competitively, whereas Naive Bayes
underperformed, reflecting its limitations in handling correlated variables and class imbalance.
SVM, although accurate, showed reduced sensitivity in detecting minority class instances,

which in healthcare contexts could lead to missed diagnoses.

A key strength of this study was its emphasis on explainability. Using SHAP (SHapley Additive
exPlanations), the project demonstrated how critical attributes—such as glomerular filtration
rate (GFR), blood pressure, blood urea nitrogen, and serum creatinine—were central to
classification. This alignment with established clinical knowledge (Jha et al., 2013) enhances
model trustworthiness and ensures that predictions are not only statistically valid but also
clinically meaningful. By offering transparent explanations, the models can support physicians

in decision-making and provide patients with a clearer understanding of their health status.

Beyond technical performance, the study also underscores the potential of Al-driven systems
to transform clinical workflows and patient care. Machine learning models could be integrated
into electronic health records to generate real-time risk alerts, enabling earlier referrals, tailored
interventions, and more efficient resource allocation. Such systems could be particularly
valuable in resource-constrained healthcare environments where specialist nephrology services

are limited (Webster et al., 2017).




In conclusion, this dissertation demonstrates that combining high-performing ensemble
methods with interpretability tools creates a viable pathway for applying Al in CKD prediction.
The findings reaffirm that predictive accuracy alone is insufficient in clinical contexts;
transparency and reliability are equally crucial for acceptance and adoption. With further
validation on larger and more diverse datasets, and careful attention to ethical and legal
considerations, the models developed in this study hold the potential to make a meaningful

contribution to early CKD detection and long-term patient outcomes.

6.2 Future Work
While this study demonstrates the effectiveness of machine learning models in predicting

Chronic Kidney Disease (CKD), there remain several avenues for future research and

development to enhance the robustness, applicability, and clinical impact of such systems.

Inclusion of Longitudinal and Lifestyle Data The current dataset primarily focused on
clinical and biochemical indicators measured at a single point in time. However, CKD is a
progressive disease, and predictive performance can be improved by incorporating longitudinal
data such as repeated laboratory values and kidney function trajectories (Tangri et al., 2016).
Lifestyle factors—such as diet, smoking, alcohol use, and physical activity—also play an
important role in CKD onset and progression, and their inclusion can provide a more holistic
assessment of patient risk (Chen et al., 2019). Future studies should therefore move towards

combining both medical and behavioural data sources for richer predictive modelling.

Integration with Electronic Health Records (EHRs) A promising direction is the integration
of machine learning models within Electronic Health Records (EHRs). Embedding prediction
algorithms directly into EHR platforms would allow for real-time alerts and decision support
during patient consultations (Shickel et al., 2018). Such integration would also facilitate
population-level screening and enable proactive interventions, ultimately reducing the burden
of late-stage diagnosis. However, challenges remain regarding interoperability and data

privacy, which must be carefully addressed (Razzak et al., 2019).

Explainability Enhancements Although SHAP values were employed in this study to improve
interpretability, further explainability research is needed. Hybrid interpretability frameworks—
combining SHAP with counterfactual explanations and clinician-friendly visualisations—
could further enhance trust (Lundberg et al., 2020). Increasing transparency ensures that
healthcare providers understand not only the predictions but also the rationale behind them,

which is essential for supporting shared decision-making (Holzinger et al., 2019).




Ethical and Legal Considerations Machine learning in healthcare raises complex ethical and
legal concerns. Bias in training data can result in inequitable outcomes for vulnerable
populations (Char et al., 2018). Furthermore, issues of accountability and liability must be
addressed, particularly when automated systems influence diagnostic or treatment pathways
(Morley et al., 2020). Future research must therefore investigate robust governance and
regulatory frameworks that ensure fairness, accountability, and transparency in Al-driven

healthcare systems.

Clinical Trials and Real-World Validation Although retrospective datasets provide a
foundation for algorithm development, prospective clinical trials are essential to validate real-
world effectiveness. Randomised trials and deployment studies can evaluate not only
diagnostic accuracy but also patient outcomes and healthcare efficiency (Topol, 2019). External
validation across diverse populations is also necessary to confirm generalisability, ensuring that

models remain effective across healthcare systems and demographic groups (Wiens et al.,

2019).

In summary, future work should move beyond retrospective data analysis towards the
development of dynamic, transparent, and ethically sound prediction systems. By integrating
longitudinal and lifestyle data, embedding models into EHRs, enhancing interpretability,
addressing ethical-legal challenges, and validating performance through clinical trials, machine
learning can evolve from a research tool to a clinically transformative framework for CKD

prediction.
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APPENDIXES

[ 1 import pandas as pd
import kagglehub
import zipfile
import os
import matplotlib.pyplot as plt
import seaborn as sns
Lo gnyplotpandas
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from imblearn.over_sampling import SMOTE
from xgboost import XGBClassifier
from sklearn.svm import svc
from collections import Counter
from sklearn.naive_bayes import GaussianhB
import lightgbm as lgb
import shap
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import ConfusionMatrixDisplay, RocCurveDisplay
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score

_I,'
[ ] pip install shap
S+ Requirement already satisfied: shap in /usr/local/lib/python3.11/dist-packages (©.48.8)
Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from shap) (2.0.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from shap) (1.15.3)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (from shap) (1.6.1)
Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from shap) (2.2.2)
Requirement already satisfied: tqdm»=4.27.0 in /usr/local/lib/python3.11/dist-packages (from shap) (4.67.1)
Requirement already satisfied: packaging>2e.9 in /usr/local/lib/python3.11/dist-packages (from shap) (25.e)
Requirement already satisfied: slicer==0.8.8 in fusr/local/lib/python3.11/dist-packages (from shap) (0.0.8)
Requirement already satisfied: numba>=0.54 in /usr/local/lib/python3.11/dist-packages (from shap) (@.60.0)
Requirement already satisfied: cloudpickle in /usr/local/lib/python3.11/dist-packages (from shap) (3.1.1)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.11/dist-packages (from shap) (4.14.1)
Requirement already satisfied: 1lvmlite<®.44,>=0.43.@dev® in /usr/local/lib/python3.11/dist-packages (from numba»=0.54->shap) (0.43.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->shap) (2.9.8.post@)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->shap) (2025.2)
Requirement already satisfied: tzdata»=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->shap) (2025.2)
Requirement already satisfied: joblib»=1.2.8 in /fusr/local/lib/python3.11/dist-packages (from scikit-learn->shap) (1.5.1)
Requirement already satisfied: threadpoolctl»=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn->shap) (3.6.0)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->shap) (1.17.8)
[ 1 path = kagglehub.dataset download("aryannandanwar/ckdchronic-kidney-disease-dataset-with-stages™)
print("Path to dataset files:", path)
3% Downloading from https://www.kaggle.com/api/vi/datasets/download/aryannandanwar/ckdchronic-kidney-disease-dataset-with-stages?dataset version_number=1...

100% | B 251k/251k [ee:0e<e0:00, 52.31B/s]Extracting files...
Path to dataset files: /root/.cache/kagglehub/datasets/aryannandanwar/ckdchronic-kidney-disease-dataset-with-stages/versions/1

Load the Dataset and Initial Preprocessing

[ 1 zip path = "/content/archive.zip"
extracted_path = "/mnt/data/ckd_dataset_extracted”
with zipfile.zZipFile(zip_path, 'r") as zip_ref:
zip_ref.extractall(extracted_path)

extracted files = os.listdir(extracted_path)
extracted_files

0

["updated_ckd dataset_with_stages.csv']




[ 1 correct_csv_path = "/mnt/data/ckd _dataset_extracted/updated ckd dataset with_stages.csv"

df = pd.read_csv(correct_csv_path)
df .head()

w N =2 o

4

serum_creatinine gfr bun serum_calcium ana

4.920235 42.214590 134.182157 7.289379 1

5 rows x 23 columns

|
]

[

dt.into()

©€3_c4 hematuria oxalate_levels

0683683 32.946784  7.563739 10.039896 0 138.204989
3.809044 32.685035 141.347494 8.330543 1 24282343
1.143827 2079805 15.979104 9.419229 0 163.970666
4.804657 109.871407  53.307333 7.556631 1 71.056846

23.384639

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4800 entries, © to 3999
Data columns (total 23 columns):

#

W0~ RN E®

[ I I e R N =
[ e T v s B I I R = WU R S = v

21
22

dtypes: float64(9), inté64(5), object(9)
memory usage: 718.9+ KB

Ccolumn
serum_creatinine
gfr

bun
serum_calcium
ana

c3 c4

hematuria
oxalate levels
urine_ph

blood pressure
physical activity
diet
water_intake
smoking

alcohol
painkiller_usage
family history
weight changes
stress level
months

cluster

ckd pred

ckd stage

Non-Null Count

A060

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

0

2878164 7.864308
4767639 4.920015
1.818613 6.188115
4051686 5.278607
3.240920 4.862923

floate4d
floatea
floatea
floatea
inte4
floatea
inte4
floated
floated
floated
object
object
floated
object
object
object
object
object
object
inte4
inte4
object
inte4

urine_ph blood_pressure ...

115.224217
130.143900

98.026072
142.166650
151.962572

smoking alcohol painkiller_usage family histor

yes daily
yes daily
no daily
no never

no occasionally

no

no

ye
ye

r
ye

r




Exploratory Data Analysis:

4 N Y
\\7+ Code/.\ { + Textr )

Dropping unwanted columns:

[ 1 df.drop(columns=["cluster”, "months"], inplace=True)

Encode target column

[ 1 df['ckd pred'] = df["ckd_pred'].replace({"CkD': 1, 'Not CKD': @})

Encode categorical columns

[ ] categorical cols = ['physical activity', 'diet’, 'smoking’, ‘alcohol’,
‘painkiller usage', ‘family history', ‘weight changes’, 'stress level']
le = LabelEncoder()
for col in categorical_cols:
df[col] = le.fit transform(df[col])

sns,countplot(x="ckd pred", data=df)
.title('CKD vs Non-CKD Count')
plt.xlabel('CKD Presence (@ = No, 1 = Yes)')
plt.ylabel( Count™)

plt.show()

—

=1
=
+

[4)

CKD vs Non-CKD Count

4000 -

3500 4

3000 -
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2000 1

Count

1500 -
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500 A

1 No CKD
CKD Presence (0 = No, 1 = Yes)




0

0

plt.ylabel('cCount"’)
plt.tight_layout()
plt.show()

Distribution of GFR

Count

plt.xlabel( (KD Stage")
pl
pl
pl

-+

.tight_layout()
.show()

-+

.ylabel('Serum Creatinine")

Serum Creatinine by CKD Stage

Serum Creatinine

o

~¥N Crana




e e

plt.show()

Ol

Blood Pressure Distribution

250 1 —

200 1

Count
=
wu
o

100 A

UL A

100 12
Blood Pressure

) plt.figure(figsize=(6, 4))
sns.countplot(x="stress_level', data=df, order=df[’stress_level'].value_counts().index)
plt.title('Count of Stress Levels')
plt.xlabel('Stress Level')
plt.ylabel('Count")
plt.tight layout()
plt.show()

(4]

Count of Stress Levels

1400 A
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plt.title( Alcohol Consumption vs CKD')

[ pit.xlabel( alconol®)
plt.ylabel('Count”)
plt.legend(title="CKD Prediction")
plt.tight_layout()

plt.show()
5> ;
- Alcohol Consumption vs CKD
CKD Prediction
1200 - -1
B No CKD

1000 -

800 ~

Count

600

0 1 2
Alcohol

[ print(df['ckd pred'].unique())
print(df['ckd_pred'].apply(type).value_counts())

5% [1 "No CkD']
ckd_pred
<class "int'> 3875
<class ‘str'» 125

Name: count, dtype: int64
[ 1 df['ckd pred'] = df['ckd pred'].astype(str)

[ ] df['ckd pred'] = df['ckd_pred'].replace({
9158 @)
‘@': 'No CKD',
"no’: 'No CKD',
"No': 'No CKD',
"No CKD': 'No CKD',
"CKD': 'CKD'

b

[ 1 le = LabelEncoder()
df['ckd_pred'] = le.fit_transform(df['ckd_pred'])

print(“Label mapping:", dict(zip(le.classes , le.transform(le.classes ))))

=¥ Label mapping: {'CKD': np.int64(@), 'No CKD': np.int64(1)}




Splitting and Scaling

[ ] df['ckd _pred mapped'] = df['ckd _pred'].map({'ckDp': @, 'No CKD': 1})
df_clean = df.dropna(subset=["ckd_pred_mapped'])

o X = df_clean.drop(['ckd pred', ‘ckd_pred mapped', 'ckd_stage'], axis=1)
y = df_clean['ckd pred mapped'].astype(int)

[ 1 print("Unique values in ‘ckd_pred':")
print(df["ckd pred’].unique())

5% unique values in ‘ckd pred':
[

e 1]

[ 1 df['ckd pred'] = df['ckd_pred'].astype(str) # convert to string for consistent mapping
df[ 'ckd_pred_mapped’] = df['ckd_pred'].map({'CKD': @, ‘No CKD': 1, "@': @, '1': 1})

[ ] df_clean = df.dropna(subset=["ckd_pred_mapped'])

[ 1 print("Remaining rows after clean-up:", df clean.shape[®@])

~ Remaining rows after clean-up: 4000

[ 1 X = df_clean.drop(['ckd pred', 'ckd pred mapped', "ckd stage'], axis=1)
y = df_clean['ckd_pred_mapped’].astype(int)

[ 1 X train, X test, y train, y test = train_test split(
X, y, test size-0.2, stratify-y, random_state=42

Encode Categorical Features (Label Encoding)|

[ ] df_encoded = df_clean.copy()
for col in df_encoded.select dtypes(include=["'object']).columns:
le = LabelEncoder()
df_encoded[col] = le.fit_transform(df_encoded[col])

Apply SMOTE (Handle Class Imbalance)

[ 1 smote = SMOTE(random_state=42)
X _resampled, y resampled = smote.fit resample(X_train, y train)

print("Before SMOTE:", Counter(y_train))
print("After SMOTE:", Counter(y_resampled))

)

Before SMOTE: Counter({@: 3168, 1: 180})
After SMOTE: Counter({e: 31e0@, 1: 31e0})

Logistic Regression:

[ ] model = LogisticRegression(max_iter=10600)
model.fit(X_resampled, y resampled)

— v LogisticRegression

LogisticRegression(max_iter=1600)

[ ] y_pred = model.predict(X_test)

print(“classification Report:\n")
print(classification_report(y test, y pred))
print("\nConfusion Matrix:\n")
print(confusion_matrix(y_test, y pred))
print("\nROC-AUC Score:", roc_auc_score(y test, y pred))

S+ Classification Report:

precision recall fi-score  support

) 08.83 8.96 8.89 25

1 1.00 2.99 1.00 775
accuracy 8.99 800
macro avg ©.91 ©.98 ©.94 800

weighted avg 0.99 0.99 .99 800
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Receiver Operating Characteristic - Logistic Regression

Confusion Matrix - Logistic Regression
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Predicted label

Random Forest

[ 1 rf_model = RandomForestClassifier(n_estimators=10@, random_state=42)
rf_model.fit(X_train, y_train)

M RandomForestClassifier

RandomForestClassifier(random_state=42)|

[ 1 rf_preds = rf model.predict(X test)
rf probs = rf model.predict proba(X test)[:, 1]

[ 1 print("Classification Report:\n")
print(classification_report(y_test, rf_preds))

print("\nConfusion Matrix:\n")
print(confusion_matrix(y_test, rf_preds))

roc_auc rf = roc_auc score(y test, rf probs)
print(f"\nROC-AUC Score: {roc auc rf:.4f}")

print("\nConfusion Matrix:\n")
print(confusion_matrix(y_test, rf_preds))

roc_auc_rf = roc_auc_score(y_test, rf_probs)
print (f"\nROC-AUC Score: {roc_auc_rf:.af}")

5% Classification Report:
precision recall f1-score support
5] @.95 .76 2.84 25
1 2.99 1l.00 1.00 775
accuracy @.99 800
macro avg .97 ©.88 .92 800
weighted avg 9.99 9.99 9.99 800
Confusion Matrix:
[[ 12 6]
[ 1 774]]
ROC-AUC Score: ©.9983
[ 1 confusionMatrixDisplay.from predictions(y test, rf_preds, cmap=plt.cm.Greens)

plt.title("Confusion Matrix - Random Forest™)
plt.grid(False)
plt.show()




ROC Curve - Random Farest
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SVM Model
[ 1 svm model = svC(kernel="rbf', probability=True, random state=42)
svm_model.fit(X_train, y_train)
2T |- svC :
SVC(probability=True, random state=42)
[ 1 y_pred_svm = svm_model.predict(X_test)
y_prob_svm = svm_model.predict proba(X_test)[:, 1]
[ 1 print("classification Report:\n")

)

print(classification report(y test, y pred svm))

print("\nConfusion Matrix:\n™)
print(confusion_matrix(y_test, y pred_svm))

roc_auc = roc_auc_score(y_test, y_prob_svm)
print(f"\nROC-AUC Score: {roc_auc:.4f}")

print("\nConfusion Matrix:\n")
print(confusion _matrix(y_test, y_pred_svm))

roc_auc = roc_auc score(y test, yipr'obisvm)|
print(f"\nROC-AUC Score: {roc_auc:.4f}")

Classification Report:

precision recall fl-score  support

2] 1.0 0.48 @.65 25

1 9.98 1.00 @.99 775

accuracy 0.98 300
macro avg 8.99 0.74 9.82 800
weighted avg 9.98 9.98 9.98 300

Confusion Matrix:

[[ 12 13]
[ e 775]]

ROC-AUC Score: ©.9994

ConfusionMatrixDisplay.from predictions(y_test, y_pred_svm, cmap="Orrd")
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v LGBMClassifier
= LGBMClassifier(random state=42)
[ 1 y_pred_ lgbm = lgbm_model.predict(X_ test)
y _prob_lgbm = lgbm model.predict proba(X test)[:, 1]
[ 1 print("classification Report:\n")
print(classification report(y test, y pred lgbm))
print("Confusion Matrix:\n")
print(confusion matrix(y test, y pred lgbm))
roc_auc = roc_auc_score(y test, y prob lgbm)
print (f"\nROC-AUC Score: {roc_auc:.4f}")
S5~ Classification Report:
precision recall fi-score support
a 0.85 0.88 9.86 25
1 1.00 ©.99 1.00 775
accuracy 8.99 800
macro avg 0.92 0.94 8.93 800
weighted avg 9.99 9.99 9.99 800
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Confusion Matrix - LightGBM
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» XGBClassifier
[ 1 y_pred_xgb = xgb_model.predict(X_test)

[1]

y_proba_xgb = xgb_model.predict_proba(X_test)[:, 1]

print(“classification Report:\n")
print(classification_report(y_test, y_pred_xgb))

True Positive Rate

ROC-AUC Curve - LightGBM Model
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5% Classification Report:

precision recall fi-score  support

2] 0.92 0.88 9.90 25

1 1.0 1.00 1.00 775

accuracy 0.99 300
macro avg 0.96 0.94 9.95 800
weighted avg 9.99 8.99 9.99 800
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Naive Bayes:

[ ] nb_model = GaussianNB()
nb_model.fit(X_train,

)

GaussianNB()

* GaussianNB

_train)

[ 1 y_pred_nb = nb_model.predict(X_test)
y_proba_nb = nb_model.predict_proba(X_test)[:, 1]
print(“"Classification Report:\n™)
print(classification_report(y test, y_pred nb))

5% C(lassification Report:

accuracy
macro avg
weighted avg

precision

8.14
1.00

9.57
8.97

recall
1.00

9.81

2.99
@.81

f1-score

a.25
@.89

9.81
Q.57
0.87

support

25
775

800
800
800
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)

"F1-Score": [1.0@, ©.99, ©.99,8.99, 1.08, 0.25],
"ROC-AUC": [1.00, ©.98, 0.0083,0.0983, 1.00, 0.90]
1
J

# Convert to DataFrame
df comparison = pd.DataFrame(comparison_data)

# Display the table
(df_comparison)

Model Accuracy Precision Recall F1-Score

0 Logistic Regression 1.00 1.00 1.00
1 Support Vector Machine 0.99 0.99 0.98
2 Random Forest 0.99 0.99 0.99
3 LightGBM 0.99 0.99 0.99
4 XGBoost 0.99 1.00 1.00

5 Naive Bayes 0.81 0.14 1.00

1.00
0.99
0.99
0.99
1.00

0.25

ROC-AUC
1.0000
0.9800
0.9983
0.9983
1.0000

0.9000




